Molecular Properties of an NMDA Receptor Complex and Effects of Ethanol on the Expression of this Complex

  • Elias K. Michaelis
  • Mary L. Michaelis
  • Keshava N. Kumar


One of the currently held beliefs about ethanol is that some of the acute and chronic effects of this alcohol on the central nervous system (CNS) of humans and experimental animals are the result of changes in the activity of glutamate neurotransmission in the brain and spinal cord. This belief is based on the recent demonstrations that ethanol inhibits the activity of a subset of neuronal receptors for the excitatory amino acid L-glutamic acid, the class of receptors known as the N-methyl-D-aspartate receptor (NMDAR). These acute effects of ethanol on excitatory neurotransmitter function have been demonstrated for neurons grown in vitro in primary neuronal cultures as well as for neurons in brain slices (Hoffman et al., 1989; Lima-Landman and Albuquerque, 1989; Lovinger et al., 1989, 1990; White et al., 1990). The NMDAR is a subtype of the ion-channel forming receptors in the brain that are activated by the excitatory neurotransmitter L-glutamic acid (Watkins et al., 1990).


NMDA Receptor Glutamate Receptor Cerebellar Granule Cell Chronic Ethanol Synaptic Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balazs, R., Jorgensen, O.S. and Hack, N., 1988, N-Methyl-D-aspartate promotes the survival of cerbellar granule cells in culture, Neurosci. 27: 437–451.CrossRefGoogle Scholar
  2. Balazs, R., Resink, A., Hack, N., Van der Valk, J.B.F., Kumar, K.N. and Michaelis, E.K., 1992, NMDA treatment and K+-induced depolarization selectively promote the expression of an NMDA-preferring class of the ionotropic glutamate receptors in cerebellar granule neurones, Neurosci. Lett. 137: 109–113.PubMedCrossRefGoogle Scholar
  3. Bannon, M.J., Poosch, M.S., Xia, Y., Goebel, D.J., Cassin, B. and Kapatos, G., 1992, Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age, Proc. Natl. Acad. Sci. USA 89: 7095–7099.PubMedCrossRefGoogle Scholar
  4. Brewer, G.J. and Cotman, C.W., 1989, NMDA receptor regulation of neuronal morphology in cultured hippocampal neurons, Neurosci. Lett. 99: 268–273.PubMedCrossRefGoogle Scholar
  5. Chen, J.-W., Cunningham, M.D., Galton, N. and Michaelis, E.K., 1988, Immune labelling and purification of a 71-kDa glutamate-binding protein from brain synaptic membranes, J. Biol. Chem. 263: 417–426.PubMedGoogle Scholar
  6. Cotman, C.W. and Monaghan, D.T., 1988, Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity, Ann. Rev. Neurosci. 11: 61–80.PubMedCrossRefGoogle Scholar
  7. Cunningham, M.D. and Michaelis, E.K., 1990, Solubilization and partial purification of a 3-((±)-2-carboxypiperazine-4-yl)-[1,2-3H]propyl-1-phosphonic acid recognition proteins from rat brain synaptic membranes, J. Biol. Chem. 265: 7768–7778.PubMedGoogle Scholar
  8. Eaton, M.J., Chen, J.-W., Kumar, K.N., Cong, Y. and Michaelis, E.K., 1990, Immunochemical characterization of brain synaptic membrane glutamate-binding proteins, J. Biol. Chem. 265: 16195–16204.PubMedGoogle Scholar
  9. Freed, W.J. and Michaelis, E.K., 1978, Glutamic acid and ethanol dependence, Pharmacol. Biochem. Behav. 8: 509–514.PubMedCrossRefGoogle Scholar
  10. Grant, K.A., Valverius, P., Hudspith, M. and Tabakoff, B., 1990, Ethanol withdrawal seizures and the NMDA receptor complex, Eur. J. Pharmacol. 176: 289–296.PubMedCrossRefGoogle Scholar
  11. Halpain, S. and Greengard, P., 1990, Activation of NMDA receptors induces rapid dephosphorylation of the cytoskeletal protein MAP2, Neuron 5: 237–246.PubMedCrossRefGoogle Scholar
  12. Halpain, S., Girault, J-A. and Greengard, P., 1990, Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices, Nature 343: 369–372.PubMedCrossRefGoogle Scholar
  13. Hoffman, P.L., Rabe, C.S., Moses, F. and Tabakoff, B., 1989, N-Methyl-D-Aspartate receptors and ethanol: Inhibition of calcium flux and cycHc GMP production, J. Neurochem. 52: 1937–1940.PubMedCrossRefGoogle Scholar
  14. Hollman, M., O’Shea-Greenfield, A., Rogers, S. W. and Heinemann, S., 1989, Cloning by functional expression of a member of the glutamate receptor family, Nature 342: 643–648.CrossRefGoogle Scholar
  15. Ikin, A.F., Kloog, Y. and Sokolovsky, M., 1990, N-Methyl-D-aspartate/phencyclidine receptor complex of rat forebrain: Purfication and biochemical characterization, Biochemistry 29: 2290–2295.PubMedCrossRefGoogle Scholar
  16. lorio, K., Hoffman, P.L., Tabakoff, B., Kumar, K.N. and Michaelis, E.K., 1992, Increased NMDA receptor function in cerebellar granule cells exposed chronically to ethanol, Neurosci. Abs. 18: 978.Google Scholar
  17. Itano, Y., Murayama, T., Kitamura, Y. and Nomura, Y., 1992, Glutamate inhibits adenylate cyclase activity in dispersed rat hippocampal cells directly via an N-methyl-D-aspartate-like metabotropic receptor, J. Neurochem. 59: 822–828.PubMedCrossRefGoogle Scholar
  18. Keinanen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T.A., Sakman, B. and Seeburg, P.H., 1990, A family of AMPA-selective glutamate receptors, Science 249: 556–560.PubMedCrossRefGoogle Scholar
  19. Kloog, Y., Nadler, V. and Sokolovsky, M., 1988, Mode of binding of [3H]dibenzocycloalkenimine (MK-801) to the N-methyl-D-aspartate (NMDA) receptor and its therapeutic implication, FEBS Lett. 230: 167–170.PubMedCrossRefGoogle Scholar
  20. Kumar, K.N., Tilakaratne, N., Johnson, P.S., Allen, A.E. and Michaelis, E.K., 1991, Cloning of cDNA for the glutamate-binding subunit of an NMDA receptor complex, Nature 354: 70–73.PubMedCrossRefGoogle Scholar
  21. Kumar, K.N., Mattson, M.P., Wang. H., Cheng, B. and Michaelis, E.K., 1992, Antisense oligonucleotides to a 71 kDa glutamate-binding protein decrease expression of functional NMDA receptors, Neurosci. Abs. 18: 258.Google Scholar
  22. Kutsuwada, T., Kashiwabuchi, N., Mori, H., Sakimura, K., Kushiya, E., Araki, K., Meguro, H., Masaki, H., Kumanishi, T., Arakawa, M. and Mishina, M., 1992, Molecular diversity of the NMDA receptor channel, Nature 358: 36–41.PubMedCrossRefGoogle Scholar
  23. Lima-Landman, M.T.R. and Albuquerque, E.X., 1989, Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells, FEBS Lett. 247: 61–67.PubMedCrossRefGoogle Scholar
  24. Lovinger, D.M., White, G. and Weight. F.F., 1989, Ethanol inhibits NMDA-activated ion current in hippocampal neurons, Science 243: 1721–1724.PubMedCrossRefGoogle Scholar
  25. Lovinger, D.M., White, G. and Weight, F.F., 1990, NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat, J. Neurosci. 10: 1372–1379.PubMedGoogle Scholar
  26. Ly, A.M. and Michaelis, E.K., 1991, Solubilization, partial purification, and reconstitution of glutamate- and N-methyl-D-asparate-activated cation channels from brain synaptic membranes, Biochemistry 30: 4307–4316.PubMedCrossRefGoogle Scholar
  27. Mattson, M.P., Ping, D. and Kater, S.B., 1988, Outgrowth-regulating actions of glutamate in isolated hippocampal pyramidal neurons, J. Neurosci. 8: 2087–2100.PubMedGoogle Scholar
  28. Mattson, M.P., Wang, H. and Michaelis, E.K., 1991, Developmental expression, compartmentalization, and possible role in excitotoxicity of a putative NMDA receptor protein in cultured hippocampal neurons, Brain Res. 565: 94–108.PubMedCrossRefGoogle Scholar
  29. Meguro, H., Mori, H., Araki, K., Kushiya, E., Kutsuwada, T., Yamazaki, M., Kumanishi, T., Arakawa, M., Sakimura, K. and Mishina, M., 1992,Google Scholar
  30. Functional charaterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs, Nature 357:70–74.Google Scholar
  31. Michaelis, E.K., Mulvaney, J.J. and Freed, W.J., 1978, Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity, Biochem. Pharmacol. 27: 1685–1691.PubMedCrossRefGoogle Scholar
  32. Michaelis, E.K., Michaelis, M.L. and Freed, W.J., 1980, Chronic ethanol intake and synaptosomal glutamate binding activity, in “Biological Effects of Alcohol-Advances in Experimental Medicine and Biology.” H. Begleiter, ed., Vol. 126, Plenum, New York, pp. 43–56.Google Scholar
  33. Michaelis, E.K., Roy, S., Galton, N., Cunningham, M., LeCluyse, E. and Michaelis, M.L., 1987, Correlation of glutamate binding activity with glutamate-binding protein immunoreactivity in the brain of control and alcohol-treated rats, Neurochem. Int. 11: 209–218.PubMedCrossRefGoogle Scholar
  34. Michaelis, E.K., Freed, W.J., Galton, N., Foye, J., Michaelis, M.L., Phillips, I. and Kleinman, J.E., 1990, Glutamate receptor changes in brain synaptic membranes from human alcoholics, Neurochem. Res. 15: 1055–1063.PubMedCrossRefGoogle Scholar
  35. Michaelis, E.K., Michaelis, M.L., Kumar, K.N., Tilakaratne, N., Joseph, D.B., Johnson, P.S., Babcock, K.T., Aistrup, G.L. and Schowen, R.L., 1992, Purification, reconstitution, and cloning of an NMDA-ion channel complex from rat brain synaptic membranes: Implications for neurobiological changes in alcoholism, Ann. N.Y. Acad. Sci. 654: 7–18.PubMedCrossRefGoogle Scholar
  36. Minami, H., Sugawara, M., Odashima, K. and Umezawa, Y., 1991, Ion channel sensors for glutamic acid, Anal. Chem. 63: 2787–2795.PubMedCrossRefGoogle Scholar
  37. Monyer, H., Sprengel, R., Schoepfer, R., Herb, A., Higuchi, M., Lomeli, H., Burnashev, N., Sakmann, B. and Seeburg, P.H., 1992, Heteromeric NMDA receptors: Molecular and functional distinction of subtypes, Science 256: 1217–1221.PubMedCrossRefGoogle Scholar
  38. Morrisett, R.A., Rezvani, A.H., Overstreet, D., Janowsky, D.S., Wilson, W.A. and Swartzwelder, H.S., 1990, MK-801 potently inhibits alcohol withdrawal seizures in rats, European J. Pharmacol. 176: 103–105.CrossRefGoogle Scholar
  39. Moriyoshi, K., Masu, M., Ishii, T., Shigemoto, R., Mizuno, N. and Nakanishi, S., 1991, Molecular cloning and characterization of the rat NMDA receptor, Nature 354: 31–37.PubMedCrossRefGoogle Scholar
  40. Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G., 1988, A new quisqualate receptor subtype (sAA2) responsible for the glutamate induced inositol phosphate formation in rat brain synaptoneurosomes, Neurochem. Int. 13: 463–467.PubMedCrossRefGoogle Scholar
  41. Sonnenberg, J.L., Mitchelmore, C., Macgregor-Leon, P.F., Hempstead, J., Morgan, J.I. and Curran, T., 1989, Glutamate receptor agonists increase the expression of Fos, Fra and Ap1-DNA binding activity in the mammalian brain, J. Neurosci. Res. 24: 72–80.PubMedCrossRefGoogle Scholar
  42. Szekely, A.M., Barbaccia, M.L., Alho, H. and Costa, E., 1989, In primary cultures of cerebellar granule cells the activation of NMDA-sensitive glutamate receptors induces c-fos mRNA expression, Mol. Pharmacol. 35: 401–408.PubMedGoogle Scholar
  43. Watkins, J.C., Krogsgaard-Larsen, P. and Honore, T., 1990, Structure activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists, Trends Pharmacol. Sci. 11: 25–33.PubMedCrossRefGoogle Scholar
  44. Wenthold, R.J., Yokotani, N., Doi, K. and Wada, K., 1992, Immunochemical characterization of the non-NMDA glutamate receptor using subunit-specific antibodies, J. Biol. Chem. 267: 501–507.PubMedGoogle Scholar
  45. White, G., Lovinger, D.M. and Weight, F.F., 1990, Ethanol inhibits NMDA-activated current but does not alter GABA-activated current in an isolated adult mammalian neuron, Brain Res. 507: 332–336.PubMedCrossRefGoogle Scholar
  46. Wang, H., Kumar, K.N. and Michaelis, E.K., 1992, Isolation of glutamate-binding proteins from rat and bovine brain synaptic membranes and immunochemical and immunocytochemical characterization, Neuroscience 46: 793–806.PubMedCrossRefGoogle Scholar
  47. Wong, E.H.F. and Kemp, J.A., 1991, Sites for antagonism on the N-methyl-D-aspartate receptor channel complex, Ann. Rev. Pharmacol. 31: 401–425.CrossRefGoogle Scholar
  48. Xia, Y., Goebel, D.J., Kapatos, G. and Bannon, M.J., 1992, Quantitation of rat dopamine transporter mRNA: Effects of cocaine treatment and withdrawal, J. Neurochem. 59: 1179–1182.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Elias K. Michaelis
    • 1
  • Mary L. Michaelis
    • 1
  • Keshava N. Kumar
    • 1
  1. 1.Department of Pharmacology and Toxicology and the Center for Biomedical ResearchUniversity of KansasLawrenceUSA

Personalised recommendations