Skip to main content

Quantitative Multicomponent Spectral Analysis Using Neural Networks

  • Chapter
Book cover Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

  • 20 Accesses

Abstract

Recent developments in dye chemistry and modern optics have made simultaneous measurement of multiple intracellular ion species possible1. Analysis of optical spectra from intact tissues is complicated because of the presence of multiple components. Quan­titative descriptions of these components are required to apply these techniques to analyti­cal chemistry and cellular physiology. Ratio methods2 have been applied to many areas of quantitative optical signal measurement because the quantitative data is independent of dye concentration, path length and light source intensity. However, it is known that the ratio method can give erroneous results3 without special attention to the choice of the op­timal wavelengths for these methods. Full spectra carry all the information needed for qualitative and quantitative analysis. Methods like principal component regression (PCR) and partial least-squares (PLS), which have been used for full spectra calibration in most chemometrics literature4,5, or multicomponent stripping for image applications 6,7,8 need heavy computation times to perform their optimization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.T. Rijkers, L.B. Justement, A.W. Griffioen, and J.C. Cambier, Improved method for measuring intra­cellular Ca with Fluo-3, Cytometry 11: 923–927 (1990)

    Article  PubMed  CAS  Google Scholar 

  2. V.W. Macdonald, J.H. Keizer, F.F. Jöbsis, Spectrophotometric measurements of metabolically induced pH changed in frog skeletal muscle, Arch. Biocheny. 184: 423–430 (1977)

    Article  CAS  Google Scholar 

  3. U. Heinrich, J. Hoffmann, and D.W. Lübbers, Quantitative evaluation of optical reflection spectra of blood-free perfused guinea pig brain using a nonlinear multicomponent analysis, P/hügers Arch. 409: 152–157 (1987)

    Article  CAS  Google Scholar 

  4. E.V. Thomas, And D.M. Haaland, Comparison of multivariate calibration methods for quantitative spec­tra analysis, Anal. Chem. 62:1091–1099 (1990)

    Article  CAS  Google Scholar 

  5. P.J. Gemperline, J.R. Long, and V.G. Gregoriou, Nonlinear multivariate calibration using principal com­ponents regression and artificial neural networks, Anal. Chem. 63:2313–2323 (1991)

    Article  CAS  Google Scholar 

  6. S. Kawata, K. Sasaki, and S. Minami, Component analysis of spatial and spectral patterns in multispec­tral images. I. basis,“ Opt. Soc.Am. A 4: 2101–2106 (1987)

    Article  CAS  Google Scholar 

  7. S. Kawata, K. Sasaki, and S. Minami, Component analysis of spatial and spectral patterns in multispec­tral images. II. Entropy minimization, J. Opt. Soc. Arrt. A 6: 73–79 (1989)

    Article  Google Scholar 

  8. M. Nakamura, Y. Suzuki, and S. Kobayashi, A method for recovering physiological components from dy­namic radionuclide images using the maximum entropy principle: a numerical investigation, IEEE trans. Biomed. Eng. 36: 906–917 (1989)

    Article  PubMed  CAS  Google Scholar 

  9. E. Oja, A simplified neuron model as a principal component analyzer, J.Afath. Biol. 15: 267–273 (1982)

    Article  CAS  Google Scholar 

  10. T. Kohonen, Self-organized formation of topological correct feature maps. Biol. Cybern. 43: 59–69 (1982)

    Article  Google Scholar 

  11. C.W. Lin, J.C. LaManna, and Y. Takefuji, Quantitative measurement of two-component pH-sensitive colorimetric spectra using multilayer neural networks, Biol. Cvbern. (in press)

    Google Scholar 

  12. T. Kohonen, An adapative associative memoryprinciple, IEEE Compnt. 23: 444–445 (1974)

    Article  Google Scholar 

  13. P. Baldi, and K. Hornik, Neural networks and principal component analysis: learning from examples without local minima, Neural Networks 2: 53–58 (1989)

    Article  Google Scholar 

  14. T.D. Sanger, Optimal unsupervised learning in a single-layer linear feedforward neural network, Neural Networks, 2: 459–473 (1989)

    Article  Google Scholar 

  15. D.E. Rumelhart, and J.L McClelland, “The PDP Research Group: Parallel Distributed Processing”, MIT Press, Cambridge (1988)

    Google Scholar 

  16. J. Rubner, and K. Schulten, Development of feature detector by self-organization, Biol. C vbern. 62: 193–199 (1990)

    Article  CAS  Google Scholar 

  17. B.J. Wythoff, S.P. Levine, and S.A. Tomellini, Spectral peak verification and recognition using a multi-layered neural network, Anal. Chem. 62: 2702–2709 (1990)

    Article  PubMed  CAS  Google Scholar 

  18. B. Meyer, T. Hansen, D. Nute, P. Albersheim, A. Darvili, W. York, and J. Sellers, Identification of the 1H-NMR spectra of complex oligosaccharides with artificial neural networks, Science 251: 542–544

    Article  PubMed  CAS  Google Scholar 

  19. J.E. Whitaker, R.P. Haugland, and F.G. Prendergast, Spectral and Photophysical studies of Ben­zo[c]xanthene dyes: dual emission pH sensors, Anal. 13iochem. 194: 330–344 (1991)

    Article  CAS  Google Scholar 

  20. O. Seksek, N. Henry-Toulmé, F. Sureau, and J. Bolard, SNARF-1 as an intracellular pH indicator in laser microspectrofluorometry: a critical assessment, Anal. Biochern. 193: 49–54 (1991)

    Article  CAS  Google Scholar 

  21. K.J. Buckler, and R.D. Vaughan-Jones, Application of a new pH-sensitive fluoroprobe (carboxy-SNARF-1) for intracellular pH measurement in small, isolated cells, Pflfigers . Arch. 417: 234–239 (1990)

    Article  CAS  Google Scholar 

  22. S. Bassnett, L. Reinisch, and D.C. Beebe, Intracellular pH measurement using single excitation-dual emission fluorescence ratios, Ant. J. Physiol. 258: C171–C178 (1990)

    CAS  Google Scholar 

  23. J.C. LaManna, and K.A. McCracken, The use of neutral red as an intracellular pH indicator in rat brain cortex in vivo. Anal t. Biochern. 142: 117–125 (1984)

    Article  CAS  Google Scholar 

  24. T.J. Sick, T.S. Whittingham, J.C. LaManna, Determination of intracellular pH in the in vitro hippocam­pal slice preparation by transillumination spectrophotometry of neutral red. J. Neurosci. M. 27: 25–34

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lin, CW., LaManna, J.C. (1994). Quantitative Multicomponent Spectral Analysis Using Neural Networks. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_86

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_86

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics