Advertisement

Roles of Antioxidant Enzymes in Erythrocytes on Hypoxic Pulmonary Vasoconstriction

  • Kazuhiro Yamaguchi
  • Koichiro Asano
  • Tomoaki Takasugi
  • Akira Kawai
  • Masaaki Mori
  • Akira Umeda
  • Takeo Kawashiro
  • Tetsuro Yokoyama
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 345)

Abstract

Hypoxie pulmonary vasoconstriction (HPV) is of importance in egulating the distribution of blood flow in the lung, thus allowing the lung to maintain a pertinent matching between ventilation and blood flow. Recently, several authors (cf. Archer et al, 1989b) have reported that endogenous products of reactive O2 species (ROS) in the lung are the important factor for initiating HPV.

Keywords

Xanthine Oxidase Hypoxic Pulmonary Vasoconstriction Xanthine Oxidase Activity Alveolar Hypoxia Pulmonary Vascular Tone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Archer, S.L., Peterson, D., Nelson, D.P., DeMaster, E.G., Kelly, B., Eaton, J.W., and Weir, E.K., 1989a, Oxygen radicals and antioxidant enzymes alter pulmonary vascular reactivity in the rat lung, J. Appl. Physiol. 66:102–111.Google Scholar
  2. Archer, S.L., Nelson, D.P., and Weir, E.K.,1989b, Simultaneous measurement of O2 radical and pulmonary vascular ractivity in rat lung, J. Appl. Physiol. 67:1903–1911.Google Scholar
  3. Burke, T.M., and Wolin, M.S., 1987, Hydrogen peroxide elicits pulmonary arterial relaxation and guanylate cyclase activation, Am. J. Physiol. 252:H721–H732.PubMedGoogle Scholar
  4. Burke-Wolin, T., and Wolin, M.S., 1989, H2O2 and cGMP may function as an O2 sensor in the pulmonary artery, J. Appl. Physiol. 66:167–170.PubMedGoogle Scholar
  5. Gurtner, G.M., and Wolin, T.B., 1991, Interactions of oxidant stress and vascular reactivity, Am. J. Physiol. 260:L207–L211.PubMedGoogle Scholar
  6. Heffner, J.E., and Repine, J.E., 1989, Pulmonary strategies of antioxidant defense, Am. Rev. Respir. Dis. 140:531–554.PubMedCrossRefGoogle Scholar
  7. Lynch, R.E., and Fridovich, I., 1978, Permeation of the erythrocyte stroma by superoxide radical, J. Biol. Chem. 253:4697–4699.PubMedGoogle Scholar
  8. McMurtry, I.F., Hookway, B.W., and Roos, S.D., 1978, Red blood cells but not platlets prolong vascular reactivity of isolated rat lungs, Am. J. Physiol. 234:H186–H191.PubMedGoogle Scholar
  9. Michiels, C., and Remacle, J., 1988, Use of the inhibition of enzymatic antioxidant systems in order to evaluate their physiological importance, Eur. J. Biochem. 177:435–441.PubMedCrossRefGoogle Scholar
  10. Sinaceur, J., Ribiere, C., Nordmann, J., and Nordmann, R, 1984, Desferrioxamine: a scavenger of superoxide radicals ?, Biochem. Pharmacol. 33:1693–1694.PubMedCrossRefGoogle Scholar
  11. Yamaguchi, K., Mori, M., Kawai, A., Asano, K., Takasugi, T., Umeda, A., Yokoyama, T., 1991, Impairment of gas exchange in acute lung injury, Jap. J. Thorac. Dis. 29:133–144.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Kazuhiro Yamaguchi
    • 1
  • Koichiro Asano
    • 1
  • Tomoaki Takasugi
    • 1
  • Akira Kawai
    • 1
  • Masaaki Mori
    • 1
  • Akira Umeda
    • 1
  • Takeo Kawashiro
    • 1
  • Tetsuro Yokoyama
    • 1
  1. 1.Department of Medicine School of MedicineKeio UniversityTokyoJapan

Personalised recommendations