Skip to main content

Potential of Nitroimidazoles as Markers of Hypoxia in Heart

  • Chapter
Oxygen Transport to Tissue XV

Abstract

It is well known that cardiac muscle has a high and continuous requirement for oxygen. Oxygen is primarily needed, i.e., over 95%, to maintain flux through mitochondrial oxidative phosphorylation for synthesis of ATP. Oxygen is delivered to the working cardiac myocytes at levels consistent with the prevailing metabolic demands established by the various ATP-dependent reactions, principally cycling of the contractile myofilaments. When oxygen delivery is diminished, for example during ischemia, electron flux within the respiratory chain is impeded by the lack of appropriate electron acceptor at the cytochrome oxidase reaction. Consequently, the concentration of reducing equivalents (NADH and FADH2) increases. This condition establishes the opportunity for these and other sources of biological reductants to interact with exogenously supplied molecules having high electron affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biskupiak, J.E., Grierson, J.R., Rasey, J.S., Martin, G.V., and Krohn, K.A., 1991, Synthesis of an (Iodovinyl)misonidazole derivative for hypoxia imaging, J. Med. Chem. 34: 2165.

    Article  PubMed  CAS  Google Scholar 

  • DiRocco, R.J., Bauer, A., Kuczynski, B.L., Pirro, J.P., Linder, K.E., Narra, R.K., and Nunn, A.D., 1991, Imaging regional hypoxia with a new technetium-labeled imaging agent in rabbit myocardium after occlusion of the left anterior descending coronary artery. J. Nucl. Med. 33 Suppl (5): 865 (abstr.).

    Google Scholar 

  • Chapman, D., Lee, J., and Meeker, B.E., 1989, Cellular reduction of nitroimidazole drugs: Potential for selective chemotherapy and diagnosis of hypoxic cells, Int.1. Radiation Oncology Biol. Phys. 16: 911.

    Article  CAS  Google Scholar 

  • Coburn, R.E., Ploemaker, F., Gondric, P., and Abboul, R., 1973, Myocardial myoglobin oxygen tension, Am. J. Physiol., 224: 870.

    PubMed  CAS  Google Scholar 

  • Greenstock, C.L., Ruddock, G.W., and Neta, P., 1976, Pulse radiolysis and ESR studies of the electron affinic properties of nitroheterocyclic radiosensitizers, 66: 472.

    CAS  Google Scholar 

  • Feld, T., and Nunn, A.D. 1989, A chromatographic method for the measurement of lipophilicity of lipophilic technetium complexes, J. Labeled Compd. Radiopharm. 26: 274.

    Article  Google Scholar 

  • Jurisson, SS.; Hirth, W., Linder, K.E., Di Rocco R.J., Narra, R.K., Nowotnik, D.P., Nunn, A.D., 1991, Chloro-hydroxy substitution of technetium BATO [TcCI(dioxime)3BR] complexes, Nucl. Med. Biol. 18: 735.

    CAS  Google Scholar 

  • Kedderis, G.L., Argenbright, L.S., and Miwa, G.T., 1989, Covalent interaction of 5-nitroimidazoles with DNA and protein in vitro: Mechanism of reductive activation, Chem. Res. Toxicol. 2: 146.

    Article  PubMed  CAS  Google Scholar 

  • Linder, K.E., Cyr, J., Chan, Y.-W., Raju, N., Ramalingam, K., Nowotnik, D.P., and Nunn, A.D., 1992, Chemistry of a Tc-PnAO-nitroimidazole complex that localizes in hypoxic tissue, J. Nucl. Med. 33 Suppl (5): 919 (abstr.)

    Google Scholar 

  • Martin, G.V., Caldwell, J.H., Rasey, J.S., Grunbaum, Z., Cerqueira, M., and Krohn, K.A. Enhanced binding of the hypoxic cell marker [3H]fluoromisonidazole in ischemic myocardium. J. Nucl. Med. 30:194–201, 1989.

    PubMed  CAS  Google Scholar 

  • McClelland, R.A., Fuller, J.R., Seaman, N.E., Rauth, A.M., and Battistella, R. 1984, 2-Hydroxylaminoimidazoles-Unstable intermediates in the reduction of 2-nitroimidazoles, Biochem. Pharmacol. 33: 303.

    Article  PubMed  CAS  Google Scholar 

  • Raleigh, J.A., Shum, F.Y., and Lu, S.F., 1981, Nitroreductase-induced binding of nireoaromatic radiosensitizers to unsaturated lipids. Nitroxyl adducts, Biochem. Pharmacol. 30 (21): 2921.

    Article  PubMed  CAS  Google Scholar 

  • Rauth, A.M., 1984, Pharmacology and toxicology of sensitizers: Mechanism studies, Int. J. Radiation Oncology 10: 1293.

    Article  CAS  Google Scholar 

  • Rumsey, W.L., Schlosser, C., Nuutinen, E.M., Robiolio, M., and Wilson, D.F., 1988, Cellular Energetics and the oxygen dependence of respiration in cardiac myocytes isolated from adult rat. J. Biol. Chem. 265 (26): 15392.

    Google Scholar 

  • Shelton, M.E., Dence, C.S., Hwang, D.-R., Welch, M.J., and Bergmann, S.R.,, 1989, Myocardial kinetics of fluorine-18 misonidazole: A marker of hypoxic myocardium. J. Nucl. Med. 30: 351–358.

    PubMed  CAS  Google Scholar 

  • Stratford, I.J., 1982, Mechanisms of hypoxic cell radiosensitization and the development of new sensitizers, Int.J. Radiation Oncology Biol. Phys. 8: 391.

    Article  CAS  Google Scholar 

  • Varghese, A.J., Gulyus, S., Mohindra, J.K., 1976, Hypoxia-dependent reduction of 1-(2-nitro-1imidazoyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in vivo., Cancer Res. 36: 3761.

    PubMed  CAS  Google Scholar 

  • Varghese, A.J., and Whitmore, G.F., 1980, Binding to cellular macromolecules as a possible mechanism for the cytotoxicity of misonidazole, Cancer Res. 40: 2166.

    Google Scholar 

  • Varghese, A.J., and Whitmore, G.F., 1981, Cellular and chemical reduction products of misonidazole, Chem. Biol. Interactions, 36: 141.

    Article  CAS  Google Scholar 

  • Wilson, D.F., Rumsey, W.L., Green, T.J., and Vanderkooi, J.M., 1988, The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration, J. Biol. Chem. 263 (6): 2712.

    PubMed  CAS  Google Scholar 

  • Wittenberg, B.A., and Robinson, T.F., 1981, Oxygen requirements, morphology, cell coat and membrane permeability of calcium-tolerant myocytes from hearts of adult rats, Cell. Tissue Res. 216: 231.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rumsey, W.L. et al. (1994). Potential of Nitroimidazoles as Markers of Hypoxia in Heart. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics