Skip to main content

O2Transport in Skeletal Muscle: Development of Concepts and Current State

  • Chapter
Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

Abstract

When comparing oxygen consumption rates(V O2) of various organs — as shown in Fig. 1 —skeletal muscle is exceptional in two respects: Its consumption rate attains the second largest absolute value of all organs and may vary between rest (0.2 mlO 2.100g-1’• min -1 ) and maximum performance (16 m1O 2.100g-1min -1 for electrical stimulation) by a factor of 80, thus covering a range that is by far larger than in any other tissue. In order to understand muscle O 2 transport one has to identify transport mechanisms and evaluate their importance towards bringing about the observed high O 2 fluxes and allowing for their enormous variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Federspiel, A model study of intracellular oxygen gradients in a myoglobin-containing skeletal muscle fiber, Biophys.J. 49:857–868 (1986)

    Article  PubMed  CAS  Google Scholar 

  2. T.E.J. Gayeski, C.R. Honig, Intracellular \( {P_{{o_2}}}\) in long axis of individual fibers in working dog gracilis muscle, Am. J.Physiol. 254:H1179–H1186 (1988)

    PubMed  CAS  Google Scholar 

  3. K. Groebe, A versatile model of steady state O 2 supply to tissue. Application to skeletal muscle, Biophys.J. 57:485–498 (1990)

    Article  PubMed  CAS  Google Scholar 

  4. J.D. Hellums, The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue, Microvasc.Res. 13:131–136 (1977)

    Article  PubMed  CAS  Google Scholar 

  5. C.R. Honig, T.E.J. Gayeski, W. Federspiel, A. Clark, P. Clark, Muscle O 2 gradients from hemoglobin to cytochrome: new concepts, new complexities, Adv.Exp.Med.Biol. 169:23–38 (1984)

    Article  PubMed  CAS  Google Scholar 

  6. C.R. Honig, T.E.J. Gayeski, K. Groebe, Myoglobin and oxygen Gradients, pp. 1489–1496 in: “The Lung, Scientific Foundations”, R.G. Crystal, J.B. West et al. (eds.), Raven, New York, 1990

    Google Scholar 

  7. F. Kreuzer, L. Hoofd, Facilitated diffusion of oxygen and carbon dioxide, pp. 89–111 in: “Handbook of Physiology, Sect. 3: The Respiratory System, Vol. IV: Gas Exchange”, L.E. Fahri, S.M. Tenney, eds., American Physiological Society, Bethesda, 1987

    Google Scholar 

  8. A. Krogh, The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue, J.Physiol.(London) 52:409–415 (1918–1919 A)

    Google Scholar 

  9. A. Krogh, The supply of oxygen to the tissues and the regulation of the capillary circulation, J.Physiol.(London) 52:457–474 (1918–1919 A)

    Google Scholar 

  10. A.S. Popel, C.K. Charny, A.S. Dvinsky, Effect of heterogeneous oxygen delivery on the oxygen distribution in skeletal muscle, Math.Biosci. 81:91–113 (1986)

    Article  Google Scholar 

  11. G. Thews, Über die mathematische Behandlung physiologischer Diffusionsprozesse in zylinderförmigen Objekten, Acta Biotheoretica 10:105–137 (1953)

    Article  Google Scholar 

  12. G. Thews, Die Sauerstoffdiffusion im Gehirn, Pflügers Arch. 271:197–226 (1960)

    Article  CAS  Google Scholar 

  13. G. Thews, Theoretische Grundlagen für die Bestimmung der Verbrauchsfunktion des kontraktionsabhängig atmenden Muskels, Pflügers Arch. 273:367–379 (1961)

    Article  CAS  Google Scholar 

  14. G. Thews, Die Sauerstoffdrücke im Herzmuskelgewebe, Pflügers Arch. 276:166–181 (1962)

    Article  CAS  Google Scholar 

  15. G. Thews, Oxygen supply to the dynamically working skeletal muscle, pp. 63–75 in: “Funktionsanalyse biologischer Systeme, Bd. 16”, M. Meyer, N. Heisler (eds.), Akademie der Wissenschaften and der Literatur, G. Fischer, Stuttgart, 1986

    Google Scholar 

  16. J.B. Wittenberg, Myoglobin-facilitated oxygen diffusion: Role of myoglobin in oxygen entry into muscle, Physiol.Rev. 50:559–636 (1970)

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Groebe, K. (1994). O2Transport in Skeletal Muscle: Development of Concepts and Current State. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics