Skip to main content

Alveolar-Capillary Gas Transfer in Lungs: Development of Concepts and Current State

  • Chapter
Book cover Oxygen Transport to Tissue XV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 345))

Abstract

In the lungs, the alveolar/capillary gas transfer is an intermediate step in gas transport, interposed between ventilation and pulmonary blood flow. A major difficulty in analysing pulmonary gas exchange in terms of ventilation, gas/blood transfer and perfusion is due to the fact that the lung is highly inhomogeneous with respect to these processes and their combination. Moreover, the alveolar-capillary transfer involves diffusion across heterogeneous media and chemical reactions, and in the case of O2the binding to hemoglobin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adaro, F., Scheid, P., Teichmann J., and Piiper, J., 1973, A rebreathing method for estimating pulmonary \( {D_{{o_2}}}\) :theory and measurements in dog lungs, Respir. Physiol. 18:43–63.

    Article  PubMed  CAS  Google Scholar 

  • Cerretelli, P., Veicsteinas, A., Teichmann, J., Magnussen, H., and Piiper, J., 1974, Estimation by a rebreathing method of pulmonary O2 diffusing capacity in man, J. Appl. Physiol. 56:553–563.

    Google Scholar 

  • Chinet, A., Micheli, J.L., and Haab, P., 1971, Imhomogeneity effects on O2 and CO pulmonary diffusing capacity estimates by steady-state methods. Theory, Respir. Physiol. 13:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Coin, J.T., and Olson, J.S., 1979, The rate of oxygen uptake by human red blood cells, Biol. Chem. 254:1178–1190.

    CAS  Google Scholar 

  • Frech, W.-E., Schultenhinrichs, D., Vogel, H.R., and Thews, G., 1968, Modelluntersuchungen zum Austausch der Atemgase. I. Die O2-Aufnahmezeit des Erythrocyten unter den Bedingungen des Lungencapillarblutes, Pflügers Arch. ges. Physiol. 301:292–301.

    Article  CAS  Google Scholar 

  • Gad-El-Hak, M., Morton, J.B., and Kutchai, H., 1977, Turbulent flow of red cells in dilute suspensions. Effect on kinetics of O2 uptake. Biophys. J.18:289–300.

    Article  PubMed  CAS  Google Scholar 

  • Gehr, P., Bachofen, M., and Weibel, E.R., 1978, The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir. Physiol. 32:121–140.

    Article  PubMed  CAS  Google Scholar 

  • Geiser, J., Schibli, H., and Haab, P., 1983, Simultaneous O2 and CO diffusing capacity estimates from assumed lognormal VA,Q and DL distributions, Respir. Physiol. 52:53–67.

    Article  PubMed  CAS  Google Scholar 

  • Gray, A.T., 1991, The effects of VAQ D/VA inequalities on pulmonary oxygen diffusing capacity estimates, Respir. Physiol. 84:287–293.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, M.D., Gale, G.E., Kapitan, K.S., Ries, A., and Wagner, P.D., 1986, Pulmonary gas exchange in humans during exercise at sea level, J. Appl. Physiol. 60:1590–1598.

    PubMed  CAS  Google Scholar 

  • Hammond, M.D., and Hempleman, S.C., 1987, Oxygen diffusing capacity estimates derived from measured VA/Q distributions in man, Respir. Physiol. 69:129–147.

    Article  PubMed  CAS  Google Scholar 

  • Heidelberger, E., and Reeves, R.B., 1990a, O2 transfer kinetics in a whole blood unicellular thin layer, J. Appl. Physiol. 68:1854–1864.

    Article  CAS  Google Scholar 

  • Heidelberger, E., and Reeves, R.B., 1990b, Factors affecting whole blood O2 transfer kinetics: implications for θ(O2), J. Appl. Physiol. 68:1865–1874.

    CAS  Google Scholar 

  • Hempleman, S.C., and Gray, A.T., 1988, Estimating steady-state \( {D_{{o_2}}}\) with nonlinear dissociation curves and VA/Q inequality, Respir. Physiol. 73:279–288.

    Article  PubMed  CAS  Google Scholar 

  • Holland, R.A.B., Shibata, H., Scheid, P., and Piiper, J., 1985, Kinetics of O2 uptake and release by red cells in stopped-flow apparatus: effects of unstirred layer, Respir. Physiol. 59:71–91.

    Article  PubMed  CAS  Google Scholar 

  • Hook, C., Yamaguchi, K., Scheid, P., and Piiper, J., 1988, Oxygen transfer of red blood cells: experimental data and model analysis, Respir. Physiol. 72:65–82.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, V.H., and Kutchai, H., 1981, The effect of the red cell membrane and a diffusion boundary layer on the rate of oxygen uptake by human erythrocytes, J. Physiol. (London) 316: 75–88.

    CAS  Google Scholar 

  • Meyer, M., Scheid, P., Riepl, G., Wagner, H.J., and Piiper J., 1981, Pulmonary diffusing capacities for O2 and CO measured by a rebreathing technique, J. Appl. Physiol. 51:1643–1650.

    PubMed  CAS  Google Scholar 

  • Meyer, M., Schuster, K.D., Schulz, H., Mohr, M., and Piiper, J., 1990, Pulmonary diffusing capacities for nitric oxide and carbon monoxide determined by rebreathing in dogs, J. Appl. Physiol. 68:2344–2357.

    PubMed  CAS  Google Scholar 

  • Mochizuki, M., 1991, “Blood Gas Exchange Kinetics”, Nishimaruyama Hospital, Sapporo.

    Google Scholar 

  • Niesel, W., Thews, G., and Lübbers, D.W., 1959, Die Messung des zeitlichen Verlaufs der O2- Aufsättigung and -Entsättigung menschlicher Erythrocyten mit dem Kurzzeit- Spektralanalysator, Pflügers Arch. ges. Physiol. 268:296–307.

    Article  CAS  Google Scholar 

  • Piiper, J., 1961a, Unequal distribution of pulmonary diffusing capacity and the alveolar-arterial \( {P_{{o_2}}}\) differences: theory, J. Appl. Physiol. 16:493–498.

    Google Scholar 

  • Piiper, J., 1961b, Variations of ventilation and diffusing capacity to perfusion determining the alveolar-arterial O2 difference: theory, J. Appl. Physiol. 16:507–510.

    CAS  Google Scholar 

  • Piiper, J., 1992, Diffusion-perfusion inhomogeneity and alveolar-arterial O2 diffusion limitation: theory, Respir. Physiol. 87:349–356.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J., Haab, P., and Rahn, H., 1961, Unequal distribution of pulmonary diffusing capacity in the anesthetized dog, J. Appl. Physiol. 16:499–506.

    Google Scholar 

  • Piiper, J., Meyer, M., and Scheid, P., 1978, Pulmonary diffusing capacity for O2 and CO at rest and during exercise, Bull. Eur. Physiopathol. Respir. 15:145–150.

    Google Scholar 

  • Piiper, J., and Scheid, P., 1981, Model for capillary-alveolar equilibration with special reference to O2 uptake in hypoxia, Respir. Physiol. 46:193–208.

    Article  PubMed  CAS  Google Scholar 

  • Piiper, J., and Scheid, P., 1983, Comparison of diffusion and perfusion limitations in alveolar gas exchange, Respir. Physiol. 51:287–290.

    Article  PubMed  CAS  Google Scholar 

  • Rice, S.A., 1980, Hydrodynamics and diffusion consideration of rapid-mix experiments with red blood cells, Biophys. J. 29:65–78.

    Article  PubMed  CAS  Google Scholar 

  • Roughton, F.J.W., and Forster, R.E., 1957, Relative importance of diffusion and chemical reaction rates in determining rate of exchange of gases in the human lung, with special reference to true diffusing capacity of pulmonary membrane and volume of blood in the lung capillaries, J. Appl. Physiol. 11:291–302.

    Google Scholar 

  • Schmidt, W., and Schnabel, K.H., 1970, Methodische Verbesserungen des Verfahrens der Verteilungsanalyse von Ventilation, Perfusion and O2- Diffusionskapazität der Lunge, Respiration 27:15–23.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, W., Thews, G., and Schnabel, K.H., 1972, Results of distribution analysis of ventilation, perfusion, and O2 diffusing capacity in the human lung. Investigations in healthy subjects and in patients with obstructive lung disease, Respiration 29:1–16.

    Article  PubMed  CAS  Google Scholar 

  • Thews, G., 1959, Untersuchung der Sauerstoffaufnahme und -abgabe sehr dünner Blutlamellen, Pflügers Arch. ges. Physiol. 268:308–317.

    Article  CAS  Google Scholar 

  • Thews, G., 1961, Die Sauerstoffdiffusion in den Lungencapillaren, in: “Physiologie und Pathologie des Gasaustausches in der Lunge” (Bad Oeynhausener Gespräche IV), H. Bartels, and E. Witzleb, eds., Springer, Berlin, Göttingen, Heidelberg, pp. 1–19.

    Chapter  Google Scholar 

  • Thews, G., 1963, Die theoretischen Grundlagen der Sauerstoffaufnahme in der Lunge. Ergebn. Physiol. 53:42–107.

    Article  PubMed  CAS  Google Scholar 

  • Thews, G., 1979, Der Einfluss von Ventilation, Diffusion und Distribution auf den pulmonalen Gasaustausch. Analyse der Lungenfunktion unter physiologischen und pathologischen Bedingungen. Funktionsanalyse biologischer Systeme 7. Akademie der Wissenschaften und der Literatur, Mainz/Steinkopf Wiesbaden, pp. 1–126.

    Google Scholar 

  • Thews, G., and Schmidt, W., 1976, Partitioning of the alveolar-arterial O2 pressure difference under normal, hypoxic and hyperoxic conditions. Respiration 33:245–255.

    Article  PubMed  CAS  Google Scholar 

  • Thews, G., Schmidt, W., and Schnabel, K.H., (1971), Analysis of distribution inhomogeneities of ventilation, perfusion, and O2 diffusing capacity in the human lung. Respiration 28:197–215.

    Article  PubMed  CAS  Google Scholar 

  • Thews, G., und Vogel, H.R., (1968), Die Verteilungsanalyse von Ventilation, Perfusion und O2-Diffusionskapazität in der Lunge durch Konzentrationswechsel dreier Inspirationsgase. I. Theorie. Pflügers Arch. ges. Physiol. 303:195–205.

    Article  CAS  Google Scholar 

  • Torre-Bueno, J.R., Wagner, P.D., Saltzman, H.A., Gale, G.E., and Moon, R.E., 1985, Diffusion limitation in normal humans during exercise at sea level and simulated altitude, J. Appl. Physiol. 58:989–995.

    PubMed  CAS  Google Scholar 

  • Vandegriff, K.D., and Olson, J.S., 1984, Morphological and physiological factors affecting oxygen uptake and release by red blood cells, J. Biol. Chem. 259: 12619–12627.

    PubMed  CAS  Google Scholar 

  • Veicsteinas, A., Magnussen, H., Meyer, M., and Cerretelli, P., 1976, Pulmonary O2 diffusing capacity at exercise by a modified rebreathing method, Eur. J. Appl. Physiol. 35:79–88.

    Article  CAS  Google Scholar 

  • Vidal Melo, M.F., Caprihan, A., Luft, U.C., and Loeppky, J.A., 1990, Distribution of ventilation and diffusion with perfusion in a two-compartment model of gas exchange, in: Oxygen Transport to Tissue XIII,” (Advances in Experimental Medicine and Biology, Vol. 277), Piiper, J., Goldstick, T.K., and Meyer, M., eds., Plenum Press, New York and London, pp. 653–664.

    Chapter  Google Scholar 

  • Vogel, H.R., and Thews, G., 1968, Die Verteilungsanalyse von Ventilation, Perfusion und O2-Diffusionskapazität in der Lunge durch Konzentrationswechsel dreier Inspirationsgase. II. Durchführung des Verfahrens, Pflügers Arch. 303:206–217.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, H.R., Thews, G., Schulz, V., and Mengden, H.J., 1968, Die Verteilungsanalyse von Ventilation, Perfusion und O2-Diffusionskapazität in der Lunge durch Konzentrationswechsel dreier Inspirationsgase. III. Untersuchung von Jugendlichen, älteren Personen und Schwangeren, Pflügers Arch. 303:218–229.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, P.D., Saltzman, H.A., and West, J.B., 1974, Measurement of continuous distributions of ventilation-perfusion ratios: theory, J. Appl. Physiol. 36:588–599.

    PubMed  CAS  Google Scholar 

  • Weibel, E.R., 1973, Morphological basis of alveolar gas exchange, Physiol. Rev. 53:419–495.

    PubMed  CAS  Google Scholar 

  • West, J.B., 1977a, “Ventilation/Blood Flow and Gas Exchange,” 3rd ed., Blackwell, Oxford.

    Google Scholar 

  • West, J.B., 1977b, State of the art: ventilation-perfusion relationships, Am. Rev. Respir. Dis. 116:919–943.

    CAS  Google Scholar 

  • Yamaguchi, K., Glahn, J., Scheid, P., and Piiper, J., 1987, Oxygen transfer conductance of human red blood cells at varied pH and temperature, Respir. Physiol. 67:209–223.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Kawai, A., Mori, M., Asano, K., Takasugi, T., Umeda, A., Kawashiro, T., and Yokoyama, T., 1991, Distribution of ventilation and diffusing capacity to perfusion in the lung, Respir. Physiol. 86:171–187.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, K., Nguyen-Phu, D., Scheid, P., and Piiper, J., 1985, Kinetics of O2uptake and release by human red blood cells studied by a stopped-flow technique, J. Appi. Physiol. 58:1215–1224.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Piiper, J. (1994). Alveolar-Capillary Gas Transfer in Lungs: Development of Concepts and Current State. In: Vaupel, P., Zander, R., Bruley, D.F. (eds) Oxygen Transport to Tissue XV. Advances in Experimental Medicine and Biology, vol 345. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2468-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2468-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6051-3

  • Online ISBN: 978-1-4615-2468-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics