Skip to main content

Lung Inflammation and Adhesion Molecules

  • Chapter
Cellular Adhesion

Part of the book series: New Horizons in Therapeutics ((NHTH))

Abstract

Adhesion molecules have been shown to be important in inducing inflammatory responses in experimental animals. The topic has recently been the subject of a fairly extensive review (Harlan and Liu, 1992). Adhesion molecules on endothelial cells and leukocytes are diverse, and can be divided into two groups: those that are constitutively expressed, and those that are inducible after endothelial cell contact with appropriate stimuli. Table I presents some of the adhesion molecules of endothelial cells and neutrophils that are most important in the inflammatory response. In this context, the chief difference between endothelial cells and leukocytes is that adhesion molecules are generally not constitutively expressed on the former, whereas they are on the latter. ICAM-1 and -2 are normally constitutively expressed in small amounts on endothelial cells. When endothelial cells are stimulated with TNFα, IL-1, or endotoxin, gene activation occurs, and ICAM expression is slowly but steadily increased over the next 12 hr. Also triggered is the gene controlling expression of E-selctin (ELAM-1), with maximal expression developing in about 4 hr. P-selectin is an exception to the requirement for protein synthesis; this glycoprotein is stored in the Weibel-Palade granules of endothelial cells (and in the alpha granules of platelets), and can be rapidly translocated (in 5-10 min) to the endothelial cell surface after the addition of histamine or thrombin. The most recently described adhesionpromoting molecule of the endothelial cell is Gly-CAM-1, a heavily glycosylated protein which, unlike the other adhesion molecules, has no transmembranespanning segment and appears to be entirely extracellular, embedded in the glycocalyx of the endothelial cells (Lasky et al., 1992). VCAM-1 is another adhesion-promoting molecule of endothelial cells. This glycoprotein is not normally expressed; it appears on the cell surface approximately 4 hr after stimulation, with expression being retained for the next 12-18 hr. “Counterreceptors” for these adhesion molecules are diverse (Table I). In the case of ICAM-1 and -2, the complementary reactive molecules on leukocytes are the β2 integrins (LFA-1 and Mac-1, see below). E- and P-selectin react with leukocytic lectins, which are Oligosaccharides of the structure sialyl Lewisx and sialyl Lewisa (reviewed by Harlan and Liu, 1992). Gly-CAM-l appears to be the lectin-containing molecule that is reactive with leukocytic L-selectin (see below).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beckman, J. S., Beckman, T. W., Chen, J., Marshall, P. A., and Freeman, B. A., 1990, Apparent hydroxyl radical production by peroxynitrite: Implications for endothelial injury from nitric oxide and Superoxide, Proc. Natl. Acad. Sci. USA 87:1620–1624.

    Article  PubMed  CAS  Google Scholar 

  • Craddock, P. R., Fehr, J., Dalmasso, A. P., Brigham, K. L., and Jacob, H. S., 1977, Hemodialysis leukopenia. Pulmonary vascular leukostasis resulting from complement activation by dialyzer cellophane membranes, J. Clin. Invest. 59:879–888.

    Article  PubMed  CAS  Google Scholar 

  • Gresham, H. D., Graham, I. L., Anderson, D. C., and Brown, E. J., 1991, Leukocyte adhesiondeficient neutrophils fail to amplify phagocytic function in response to stimulation: Evidence for CD11b/CD18-dependent and-independent mechanisms of phagocytosis, J. Clin. Invest. 88:588–597.

    Article  PubMed  CAS  Google Scholar 

  • Harlan, J. M., and Liu, D. Y. (eds.), 1992, Adhesion: Its Role in Inflammatory Disease, Freeman, San Francisco.

    Google Scholar 

  • Issekutz, T. B., and Wykretowicz, A., 1991, Effect of a new monoclonal antibody, TA-2, that inhibits lymphocyte adherence to cytokine stimulated endothelium in the rat, J. Immunol. 147:109–116.

    PubMed  CAS  Google Scholar 

  • Johnson, K. J., and Ward, P. A., 1974, Acute immunologic pulmonary alveolitis, J. Clin. Invest. 54:349–357.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. J., and Ward, P. A., 1981, Role of oxygen metabolites in immune complex injury of lung, J. Immunol. 126:2365–2369.

    PubMed  CAS  Google Scholar 

  • Johnson, K. J., Wilson, B. S., Till, G. O., and Ward, P. A., 1984, Acute lung injury in the rat caused by immunoglobulin A immune complexes, J. Clin. Invest. 74:358–359.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. J., Ward, P. A., Kunkel, R. G., and Wilson, B. S., 1986, Mediation of IgA induced lung injury in the rat: Role of macrophages and reactive oxygen products, Lab. Invest. 54:499–506.

    PubMed  CAS  Google Scholar 

  • Jutila, M. A., Rott, L., Berg, E. L., and Butcher, E. C., 1989, Function and regulation of the neutrophil MEL-14 antigen in vivo: Comparison with LFA-1 and MAC-1, J. Immunol. 143:3318–3324.

    PubMed  CAS  Google Scholar 

  • Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y., Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. W., and Rosen, S. D., 1992, An endothelial ligand for L-selectin is a novel mucin-like molecule, Cell 69:927–938.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., and Ward, P. A., 1992, Immune complex-induced lung and dermal vascular injury: Differing requirements for TNFα and IL-1, J. Immunol. 145:331–339.

    Google Scholar 

  • Mulligan, M. S., Hevel, J. M., Marietta, M. A., and Ward, P. A., 1991a, Tissue injury caused by deposition of immune complexes is L-arginine dependent, Proc. Natl. Acad. Sci. USA 88:6338–6342.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Varani, J., Dame, M. K., Lane, C. L., Smith, C. W., Anderson, D. C., and Ward, P. A., 1991b, Role of ELAM-1 in neutrophil-mediated lung injury in rats, J. Clin. Invest. 88:1396–1406.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Warren, J. S., Smith, C. W., Anderson, D. C., Yeh, C. G., Rudolph, A. R., and Ward, P. A., 1992a, Lung injury after deposition of IgA immune complexes: Requirements for CD18 and L-arginine, J. Immunol. 148:3086–3092.

    PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Varani, J., Warren, J. S., Till, G. O., Smith, C. W., Anderson, D. C., Todd, R. F., III, and Ward, P. A., 1992b, Roles of β2 integrins of rat neutrophils in complement-and oxygen radical-mediated acute inflammatory injury, J. Immunol. 148:1847–1857.

    PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Polley, M. J., Bayer, R. J., Nunn, M. F., Paulson, J. C., and Ward, P. A., 1992c, Neutrophil-dependent acute lung injury: Requirement for P-selectin (GMP-140), J. Clin. Invest. 90:1600–1607.

    Article  PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Smith, C. W., Anderson, D. C., Todd, R. F. III, Miyasaka, M., Tamatani, T., Issekutz, T. B., and Ward, P. A., 1993a, Role of leukocyte adhesion molecules in complementinduced lung injury, J. Immunol. 150:2401–2406.

    PubMed  CAS  Google Scholar 

  • Mulligan, M. S., Wilson, G. P., Todd, R. F. III, Smith, C. W., Anderson, D. C., Varani, J., Issekutz, T. B., Miyasaka, M., Tamatani, T., Rusche, J. R., Vaporciyan, A. A., and Ward, P. A., 1993b, Role of β1, β2 integrins and ICAM-1 in lung injury following deposition of IsG and IsA immune complexes, J. Immunol. 150:2407–2417.

    PubMed  CAS  Google Scholar 

  • Nathan, C. F., 1987, Neutrophil activation on biological surfaces: Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes, J. Clin. Invest. 80:1550–1560.

    Article  PubMed  CAS  Google Scholar 

  • Nathan, C. F., 1989, Respiratory burst in adherent neutrophils: Triggering by colony-stimulating factors CSF-GM and CSF-G, Blood 73:301–306.

    PubMed  CAS  Google Scholar 

  • Shappell, S. B., Toman, C., Anderson, D. C., Taylor, A. A., Entman, M. L., and Smith, C. W., 1990, Mac-1 (CD11b/CD18) mediates adherence-dependent hydrogen peroxide production by human and canine neutrophils, J. Immunol 144:2702–2711.

    PubMed  CAS  Google Scholar 

  • Smith, C. W., Kishimoto, T. K., Abbassi, O., Hughes, B., Rothlein, R., McIntire, L. V., Butcher, E., and Anderson, D. C., 1991, Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro, J. Clin. Invest. 87:609–618.

    Article  PubMed  CAS  Google Scholar 

  • Till, G. O., Johnson, K. J., Kunkel, R., and Ward, P. A., 1982, Intravascular activation of complement and acute lung injury. Dependency on neutrophils and toxic oxygen metabolites. J. Clin. Invest. 69:1126–1135.

    Article  PubMed  CAS  Google Scholar 

  • Ward, P. A., Till, G. O., Kunkel, R., and Beauchamp, C., 1983, Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury, J. Clin. Invest. 72:789–801.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J. S., 1991, Intrapulmonary interleukin-1 mediates acute immune complex alveolitis in the rat, Biochem. Biophys. Res. Commun. 175:604–610.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J. S., Yabroff, K. B., Remick, D. G., Kunkel, S. L., Chensue, S. W., Kunkel, R. G., Johnson, K.J., and Ward, P. A., 1989, Tumor necrosis factor participates in the pathogenesis of acute immune complex alveolitis in the rat, J. Clin. Invest. 84:1873–1882.

    Article  PubMed  CAS  Google Scholar 

  • Warren, J. S., Barton, P. A., Mandel, M., and Matrosic, K., 1990, Intrapulmonary tumor necrosis factor triggers local platelet-activating factor production in rat immune complex alveolitis, Lab. Invest. 63:746–754.

    PubMed  CAS  Google Scholar 

  • Warren, J. S., Barton, P. A., and Jones, M. L., 1991, Contrasting roles for tumor necrosis factor in the pathogenesis of IgG and IgA immune complex lung injury, Am. J. Pathol. 138:581–590.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mulligan, M.S., Ward, P.A. (1994). Lung Inflammation and Adhesion Molecules. In: Metcalf, B.W., Dalton, B.J., Poste, G., Schatz, J. (eds) Cellular Adhesion. New Horizons in Therapeutics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2466-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2466-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6050-6

  • Online ISBN: 978-1-4615-2466-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics