Advertisement

Medicinal Chemistry of AT2 Receptors

  • Jeremy J. Edmunds
  • John C. Hodges

Abstract

Angiotensin II (ANG II) produces its physiological effects via interaction with its specific receptors that are distributed among a number of different tissues.1–4 The wide variety of receptor locations as well as their varying affinity for angiotensin peptidic fragments5,6 in the presence or absence of dithiothreitol (DTT) allowed some authors to speculate about ANG II receptor subtypes.7 Indeed, some authors referred to different affinity states,8–10 the ability of ligands to bind competitively versus noncompetitively,11–13 and to different signal transduction pathways14–17 to validate their case. However, it was not until the recent discovery of selective ligands that this receptor heterogeneity was clearly established.18–28 Since the AT1 receptor subtype29 mediates a variety of therapeutically important events, in particular, vascular smooth muscle contraction, there has been little effort directed toward the design and synthesis of AT2-specific ligands. However, as losartan (DuP 753)30–33 and numerous other AT1-selective antagonists34–33 progress through the clinical departments44–46 of pharmaceutical companies, one is left to consider the clinical consequence of AT2 receptor activation. Although at present there have been very few functional correlates identified with the AT2 receptor, it would seem reasonable to expect the role of the AT2 receptor to be revealed during the long-term administration of AT1 antagonists, as a consequence of elevated ANG II levels.

Keywords

Photoaffinity Label European Patent Application Receptor Heterogeneity Nonpeptide Angiotensin Receptor Binding Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hodges JC, Hamby JH, Blankley CJ: Angiotensin II receptor binding inhibitors. Drugs Future 17(7):575–593, 1992.Google Scholar
  2. 2.
    Greenlee WJ, Siegl PKS: Angiotensin/renin modulators. Ann Rep Med Chem 26:63–72, 1991.CrossRefGoogle Scholar
  3. 3.
    Greenlee WJ, Siegl PKS: Angiotensin/renin modulators. Ann Rep Med Chem 27:59–69, 1992.CrossRefGoogle Scholar
  4. 4.
    Bovy PR, Blaine EH: Peptidic and non-peptidic angiotensin II competitive antagonists. Curr Cardiovasc Patents 1:2044–2056, 1989.Google Scholar
  5. 5.
    Douglas JG, Michailov M, Khosla MC, et al: Comparative receptor-binding properties of heptapeptide and octapeptide antagonists of angiotensin II in rat adrenal glomerulosa and uterine smooth muscle. Endocrinology 106:120–124, 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Bennett JP, Snyder SH: Receptor binding interactions of the angiotensin II antagonist 125I[sarcosine1leucine8] angiotensin II with mammalian brain and peripheral tissues. Eur J Pharmacol 67:11–25, 1980.PubMedCrossRefGoogle Scholar
  7. 7.
    Catt K, Abbott A: Molecular cloning of angiotensin II receptors may presage further receptor subtypes. Trends Pharmacol Sci 12:279–281, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Gunther S: Characterizations of angiotensin II receptor subtypes in rat liver. J Biol Chem 259:7622–7629, 1984.PubMedGoogle Scholar
  9. 9.
    Wright GB, Alexander RW, Ekstein LS, et al: Characterization of the rabbit ventricular myocardial receptor for angiotensin II: Evidence for two sites of different affinities and specifities. Mol Pharmacol 24:213–221, 1983.PubMedGoogle Scholar
  10. 10.
    Moore GJ, Kwok YC: Angiotensin receptors in resting smooth muscle are the low affinity sites observed in binding studies. Life Sci 41:505–511, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Saltman S, Baukal A, Waters S, et al: Competitive binding activity of angiotensin II analogues in an adrenal cortex radioligand-receptor assay. Endocrinoloy 97:275–282, 1975.CrossRefGoogle Scholar
  12. 12.
    Goghari MH, Franklin KJ, Moore GJ: Structure-activity relationships for the competitive angiotensin antagonist [sarconsine1O-methyltyrosine4] angiotensin II (Sarmesin). J Med Chem 29:1121–1124, 1975.CrossRefGoogle Scholar
  13. 13.
    Trachte GJ, Peach MJA: Potent noncompetitive angiotensin II antagonist induces only competitive inhibition of angiotensin III responses. J Cardiovasc Res 5:1025–1033, 1983.Google Scholar
  14. 14.
    Douglas JG, Romero M, Hopfer U: Signaling mechanisms coupled to the angiotensin receptor of proximal tubular epithelium. Kidney Int. 38:S43–S47, 1990.Google Scholar
  15. 15.
    Summers C, Tang W, Zelenza B, et al: Angiotensin II receptor subtypes are coupled with distinct signal-transduction mechanisms in neurons and astrocytes from rat brain. Proc Natl Acad Sci USA 88:7567–7571, 1991.CrossRefGoogle Scholar
  16. 16.
    Botarri SP, Taylor V, King IN, et al: Angiotensin AT2 receptors do not interact with guanine nucleotide binding proteins. Eur J Pharmacol Mol Pharmacol 207:157–163, 1991.CrossRefGoogle Scholar
  17. 17.
    Johnson MC, Aguilera G: Angiotensin-II receptor subtypes and coupling to signaling systems in cultured fetal fibroblasts. Endocrinology 129:1266–1274, 1991.PubMedCrossRefGoogle Scholar
  18. 18.
    Herblin WF, Chiu AT, McCall DE, et al: Angiotensin II receptor heterogeneity. Am J Hypertens 4:299S–302S, 1991.PubMedGoogle Scholar
  19. 19.
    Chiu AT, Herblin WF, McCall DE, et al: Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–203, 1989.PubMedCrossRefGoogle Scholar
  20. 20.
    Chang RSL, Lotti VJ: Selective ligands reveal subtypes of angiotensin receptors in rat vasculature and brain. Pharmacologist 31:150, 1989.Google Scholar
  21. 21.
    Chang RSL, Lotti VJ: Two distinct angiotensin II receptor binding sites in rat adrenal revealed by new selective nonpeptide ligands. Mol Pharmacol 37:347–351, 1990.PubMedGoogle Scholar
  22. 22.
    Dudley DT, Hubbell SE, Summerfelt RM: Characterization of angiotensin II (AT2) binding sites in R3T3 cells. Mol Pharmacol 40:360–367, 1991.PubMedGoogle Scholar
  23. 23.
    Dudley DT, Panek RL, Major TC, et al: Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38:370–377.Google Scholar
  24. 24.
    Gehlert DR, Gackenheimer SL, Reel JK, et al: Non-peptide angiotensin II receptor antagonists discriminate subtypes of 125I-angiotensin II binding sites in the rat brain. Eur J Pharmacol 187:123–126, 1990.PubMedCrossRefGoogle Scholar
  25. 25.
    Ji H, Sandberg K, Catt KJ: Novel angiotensin II antagonists distinguish amphibian from mammalian angiotensin II receptors expressed in Xenopus laevis oocytes. Mol Pharmacol 39:120–123, 1991.PubMedGoogle Scholar
  26. 26.
    Sandberg K, Ji H, Millan MA, et al: Amphibian myocardial angiotensin II receptors are distinct from mammalian AT1 and AT2 receptor subtypes. FEBS Lett 284:281–284, 1991.PubMedCrossRefGoogle Scholar
  27. 27.
    Chang RSL, Lotti VJ, Chen TB, et al: Two angiotensin II binding sites in rat brain revealed using [125I]Sar1Ile8-angiotensin II and selective nonpeptide antagonists. Biochem Biophys Res Commun 171:813–817, 1990.PubMedCrossRefGoogle Scholar
  28. 28.
    Rowe BP, Grove KL, Saylor DL, et al: Discrimination of angiotensin II receptor subtype distribution in the rat brain using non-peptidic receptor antagonists. Regul Pept 33:45–53 1991.PubMedCrossRefGoogle Scholar
  29. 29.
    Bumpus FM, Catt KJ, Chiu A, et al: Nomenclature for angiotensin receptors. Hypertension 17:720–721, 1991.PubMedCrossRefGoogle Scholar
  30. 30.
    Timmermans PBMWM, Wong PC, Chiu AT, et al: Nonpeptide angiotensin II receptor antagonists. Trends Pharmacol Sci 12:55–62, 1991.PubMedCrossRefGoogle Scholar
  31. 31.
    Carini DJ, Duncia JV, Aldrich PE, et al: Nonpeptide angiotensin II receptor antagonists: The discovery of a series of N-(biphenylylmethyl)-imidazoles as potent orally active antihypertensives. J Med Chem 34:2525–2547, 1991.PubMedCrossRefGoogle Scholar
  32. 32.
    Wong PC, Tarn SW, Herblin WF, et al: Further studies on the selectivity of DuP 753. A nonpeptide angiotensin II receptor antagonist. Eur J Pharmacol 196:201–203, 1991.PubMedCrossRefGoogle Scholar
  33. 33.
    Rhaleb NE, Rouissi N, Nantel F, et al: DuP 753 is a specific antagonist for the angiotensin receptor. Hypertension 17:480–484, 1991.PubMedCrossRefGoogle Scholar
  34. 34.
    Chiu AT, Carini DJ, Duncia JV, et al: DuP 532: A second generation of nonpeptide angiotensin II receptor antagonists. Biochem Biophys Res Commun 177:209–217, 1991.PubMedCrossRefGoogle Scholar
  35. 35.
    Weinstock J, Keenan RM, Samanen J, et al: 1-(Carboxybenzyl)imidazole-5-acrylic acids: Potent and selective angiotensin II receptor antagonists. J Med Chem 34:1514–1517, 1991.PubMedCrossRefGoogle Scholar
  36. 36.
    Mantlo NB, Chakravarty PK, Ondeyka DL, et al: Potent orally active imidazo[4,5-b]pyridinebased angiotensin II receptor antagonists. J Med Chem 34:2919–2922, 1991.PubMedCrossRefGoogle Scholar
  37. 37.
    Oku T, Setoi H, Kayakiri H, et al: European Patent Application 0426021. Fujisawa Pharmaceutical Co Filed October 26, 1990.Google Scholar
  38. 38.
    Narr B, Bomhard A, Hauel N, et al: European Patent Application 0392317. Dr. Karl Thomae Gmbh. Filed April 3, 1990.Google Scholar
  39. 39.
    Oldham AA, Allott CP, Major JS, et al: ICI D8731: A novel potent and orally-effective angiotensin II antagonist. Br J Pharmacol 105(Suppl):83P, 1992.CrossRefGoogle Scholar
  40. 40.
    Middlemiss D, Drew GM, Ross BC: Bromobenzofurans: A new class of potent non-peptide antagonists of angiotensin II. BioMed Chem Lett 1:711–716, 1991.CrossRefGoogle Scholar
  41. 41.
    Naka T, Nishikawa K: European Patent Application 0425921. Takeda Chemical Industries Ltd Filed October 19, 1990.Google Scholar
  42. 42.
    Dower M (ed): SCRIP. PJB Publications Ltd, New York, 1991(1648), p. 21.Google Scholar
  43. 43.
    Nisato D, Cazaubon C, Lacour C, et al: Pharmacological properties of SR 47436 a nonpeptidic angiotensin II receptor antagonist. Br J Pharmacol 105(Proc Suppl April):84P, 1992.Google Scholar
  44. 44.
    Nakashima M, Uematsu T, Kosuge K, et al: Pilot study of the uricosuric effect of DuP 753, a new angiotensin II receptor antagonist, in healthy subjects. Eur J Clin Pharmacol 42(3):333–335, 1992.PubMedCrossRefGoogle Scholar
  45. 45.
    Nelson E, Merrill D, Sweet C, et al: Efficacy and safety of oral MK-954 DUP753. An angiotensin receptor antagonist in essential hypertension. J Hypertens 9(Suppl 6):S468–S469, 1991.CrossRefGoogle Scholar
  46. 46.
    Munafo A, Christen Y, Nussberger J, et al: Drug concentration response relationship in normal volunteers after oral administration of losartan, an angiotensin II receptor antagonist. Clin Pharmacol Ther 51(5):513–521, 1992.PubMedCrossRefGoogle Scholar
  47. 47.
    Speth RC, Kim KH: Discrimination of two angiotensin II receptor subtypes with a selective agonist analogue of angiotensin II p-aminophenylalanine6 angiotensin II. Biochem Biophys Res Commun 169:997–1006, 1990.PubMedCrossRefGoogle Scholar
  48. 48.
    deGasparo M, Whitebread S, Kamber B, et al: Effect of covalent dimer conjugates of angiotensin II on receptor affinity and activity in vitro. J Recep Res 11:247–257, 1991.Google Scholar
  49. 49.
    Whitebread S, Mele M, Kamber B, et al: Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163:284–291, 1989.PubMedCrossRefGoogle Scholar
  50. 50.
    Balla T, Baukal AJ, Eng S, et al: Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol Pharmacol 40:401–406, 1991.PubMedGoogle Scholar
  51. 51.
    deGasparo M, Whitebread S, Mele M, et al: Biochemical characterization of two angiotensin II receptor subtypes in the rat. J Cardiovasc Pharmacol 16(Suppl 4):S31–S35, 1990.CrossRefGoogle Scholar
  52. 52.
    Turner RJ, Matsoukas JM, Moore GJ: Fluorescence properties of angiotensin II analogs in receptor-simulating environments: Relationship between tyrosinate fluorescence lifetime and biological activity. Biochim Biophys Acta 1065(l):P21–28, 1991.PubMedGoogle Scholar
  53. 53.
    Garcia KC, Ronco PM, Verroust PJ: Three-dimensional structure of an angiotensin II—fab complex at 3 A: Hormone recognition by an anti-idiotypic antibody. Science 257:502–507, 1992.PubMedCrossRefGoogle Scholar
  54. 54.
    Pierson ME, Freer RJ: Analysis of the active conformation of angiotensin II: A comparison of AII and non-peptide AII antagonists. Pept Res 5(2): 102–105, 1992.PubMedGoogle Scholar
  55. 55.
    Spear KL, Brown MS, Reinhard EJ, et al: Conformational restriction of angiotensin II: Cyclic analogs having high potency. J Med Chem 33:1935–1940, 1990.PubMedCrossRefGoogle Scholar
  56. 56.
    Marshall GR, Kaczmarek K, Kataoka T, et al: Evidence for receptor-bound turn conformations of bradykinin and angiotensin II. In: Giralt E, Andreu D (eds): Peptides 1990. ESCOM, Leiden, 1991, 594–596.Google Scholar
  57. 57.
    Plucinska K, Kataoka T, Yodo M, et al: Multiple binding modes for the receptor-bound conformations of cyclic All agonists. J Med Chem 36:1902–1913, 1993.PubMedCrossRefGoogle Scholar
  58. 58.
    Padmaja J, Cody W, Dooley D, et al: Bradykinin and angiotensin II analogs containing a conformationally constrained proline analog. Abstracts from Twelfth American Peptide Symposium, Cambridge, MA, June 16-21, 1991, No. P-474Google Scholar
  59. 59.
    Cody WL, He JX, Lunney EA, et al: Modification of the C-terminus of angiotensin II peptides lead to type 2 (AT2) receptor selectivity. Thirteenth American Peptide Symposium, Edmonton, Alberta, Canada, June 20-25, 1993, No. 607Google Scholar
  60. 60.
    Blankley CJ, Hodges JC, Kiely JS, et al: 4,5,6,7-Tetrahydro-1H-imidazo(4,5-C)pyridine-6-carboxylic acid analogs having antihypertensive activity. US Patent 4812462, March 14, 1989Google Scholar
  61. 61.
    Dudley DT, Hodges JC, Pugsley TA, et al: 4,5,6,7-Tetrahydro-1H-imidazo(4,5-c)pyridine derivatives and analogues as angiotensin II receptor antagonists. WO Patent 9205784, April 16, 1992Google Scholar
  62. 62.
    Blankely CJ, Hodges JC, Klutchko SR, et al: Synthesis and structure-activity relationships of a novel series of non-peptide angiotensin II receptor binding inhibitors specific for the AT2 subtype. J Med Chem 34:3248–3260, 1991.CrossRefGoogle Scholar
  63. 63.
    Jaiswal N, Diz DI, Chappell MC: Stimulation of endothelial cell prostaglandin production by angiotensin peptides. Characterization of receptors. Hypertension 19(2 Suppl):49–55, 1992.CrossRefGoogle Scholar
  64. 64.
    Tsutsumi K, Saavedra JM: Heterogeneity of angiotensin AT2 receptors in the rat brain. Mol Pharmacol 41(2):290–297, 1992.PubMedGoogle Scholar
  65. 65.
    Douglas J, Aguilera G, Kondo T, et al: Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology 102:685–696, 1978.PubMedCrossRefGoogle Scholar
  66. 66.
    Glossmann H, Baukal A, Aguilera G, et al: Radioligand assay for angiotensin II receptors. Methods Enzymol 109:110–126, 1985.PubMedCrossRefGoogle Scholar
  67. 67.
    Moore GJ, Kwok YCA: Comparison of binding assay and bioassay data for angiotensin analogues in uterine smooth muscle. Biochem Arch 4:145–149, 1988.Google Scholar
  68. 68.
    Chiu AT, McCall DE, Nguyen TT, et al: Discrimination of angiotensin II receptor subtypes by dithiothreitol. Eur J Pharmacol 170:117–118, 1989.PubMedCrossRefGoogle Scholar
  69. 69.
    Furukawa Y, Kishimoto S, Nishikawa K: 4-Chloro-2-phenylimidazole-5-acetic acid derivatives. European Patent Application 103647, 1984Google Scholar
  70. 70.
    Furukawa Y, Kishimoto S, Nishikawa K: Hypotensive imidazole derivatives. US Patent 4,340,598, 1982.Google Scholar
  71. 71.
    Furukawa Y, Kishimoto S, Nishikawa K: Hypotensive imidazole-5-acetic acid derivatives. US Patent 4,355,040, 1982Google Scholar
  72. 72.
    Wu MT, Ikeler TJ, Ashton WT, et al: Synthesis and structure-activity relationships of a novel series of non-peptide AT2 selective angiotensin II receptor antagonists. 205th American Chemical Society Meeting, Denver, CO, March 28-April 2, 1993, MEDI No. 100Google Scholar
  73. 73.
    Ashton WT, Greenlee WJ, Wu MT, et al: PCT International Patent Application, Publication No. WO 92/20661.Google Scholar
  74. 74.
    Wu MT, Ikeler TJ, Ashton WT, et al: Synthesis and structure-activity relationships of a novel series of non-peptide AT2 selective angiotensin II receptor antagonists. BioMed Chem Lett 3:2023–2028, 1993.CrossRefGoogle Scholar
  75. 75.
    Klutchko S, Hamby JM, Hodges JC: Tetrahydroisoquinoline derivatives with AT2specific angiotensin II receptor binding inhibitory activity. BioMed Chem Lett 4:57–62, 1994.CrossRefGoogle Scholar
  76. 76.
    Blankley CJ, Hodges JC, Klutchko S: Substituted 1,2,3,4-tetrahydroisoquinolines with angiotensin II receptor antagonist properties. US Patent No. 5,246,943, Sept. 21, 1993.Google Scholar
  77. 77.
    VanAtten MK, Ensinger CL, Wexler RR, et al: l,2,3,4-tetrahydroisoquinoline-3-carboxylic acids as novel selective inhibitors of angiotensin II binding to the AT2 site. 206th American Chemical Society Meeting, Chicago, IL, August 1993, MEDI No. 85.Google Scholar
  78. 78.
    VanAtten MK: 1,2,3,4-Tetrahydroisoquinolines useful in the treatment of CNS disorders. US Patent No. 5,236,934, Aug. 17, 1993.Google Scholar
  79. 79.
    Tsutsumi K, Saavedra JM: Characterization and development of angiotensin II receptor subtypes AT-1 and AT-2 in rat brain. Am J Physiol 261:R209–R216, 1991.PubMedGoogle Scholar
  80. 80.
    Zemel S, Millan MA, Feuillan P: Characterization and distribution of angiotensin-II receptors in the primate fetus. J Clin Endocrinol Metab 71:1003–1007, 1991.CrossRefGoogle Scholar
  81. 81.
    Whitebread SE, Taylor V, Bottari SP, et al: Radioiodinated CGP 42112: A novel high affinity and highly selective ligand for the characterization of angiotensin AT2 receptors. Biochem Biophys Res Commun 181:1365–1371 1991.PubMedCrossRefGoogle Scholar
  82. 82.
    Hodges JC, Edmunds JJ, Nordblom GD, et al: The syntheses and binding affinities of tools for the study of angiotensin AT2 receptors. BioMed Chem Lett 3:905, 1993.CrossRefGoogle Scholar
  83. 83.
    Dudley DT: Personal communication.Google Scholar
  84. 84.
    Hsieh K, LaHann TR, Speth RC: Topographic probes of angiotensin and receptor: Potent angiotensin II agonist containing diphenylalanine and long-acting antagonists containing biphenylalanine and 2-indan amino acid in position 8. J Med Chem 32:898–903, 1989.PubMedCrossRefGoogle Scholar
  85. 85.
    Seyer R, Aumelas A: Synthesis of biotinylated and photoreactive probes for angiotensin receptors. J Chem Soc Perkin Trans 1:3289–3299, 1990.CrossRefGoogle Scholar
  86. 86.
    Moore GJ: Photoaffmity labeling of angiotensin receptors: Functional studies on responding tissues. Pharmacol Ther 33:349–381, 1987.PubMedCrossRefGoogle Scholar
  87. 87.
    Escher E: Photoaffinity labeling of angiotensin II and bradykinin receptors. Pharmacol Ther 37:37–55, 1988.PubMedCrossRefGoogle Scholar
  88. 88.
    Eberle AN, deGraan PNE: General principles for photoaffinity labeling of peptide hormone receptors. Methods Enzymol 109:129–156, 1985.CrossRefGoogle Scholar
  89. 89.
    Bosse R, Servant G, Zhou L-M, et al: Selective photo-affinity labeling of angiotensin II receptors. Fed Am Soc Exp Biol 6(4):A1577, 1992.Google Scholar
  90. 90.
    Ardecky RJ, Chiu AT, Duncia JJV, et al: Treatment of CNS disorders with 4,5,6,7-tetrahydrolH-imidazo(4,5-)-pyridine derivatives and analogs. US Patent 5,091,390, February 25, 1992Google Scholar
  91. 91.
    Zhang JS, van Zwieten PA: Characterization of two novel nonpeptide angiotensin II antagonists. Br J Pharmacol 105(Suppl):85P. 1992.Google Scholar
  92. 92.
    de Laszlo SE, Quagliato CS, Greenlee WJ, et al: A potent, orally active, balanced affinity angiotensin II AT1 antagonist and AT2 binding inhibitor. J Med Chem 36:3207–3210, 1993.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Jeremy J. Edmunds
    • 1
  • John C. Hodges
    • 1
  1. 1.Department of Medicinal Chemistry, Parke-Davis Pharmaceutical ResearchDivision of Warner-Lambert CompanyAnn ArborUSA

Personalised recommendations