Skip to main content

Angiotensin Receptor Stimulation of Transforming Growth Factor-β in Rat Skin and Wound Healing

  • Chapter
Angiotensin Receptors

Abstract

Numerous studies have implicated the octapeptide angiotensin II (ANG II) as a growth factor. There is a link between angiotensin and cell growth in cardiovascular hypertrophy, in proto-oncogene regulation1 and in the excessive smooth muscle cell proliferation that occurs after balloon catheter injury.2 The neointimal regrowth has been shown to be decreased by treatment with angiotensin-converting enzyme (ACE) inhibitors and losartan, an AT1 receptor antagonist.3 Although ACE inhibitors have many actions, further work by Powell et al. 4 support the role of ANG II as the growth promotor of vascular smooth muscle cells and matrix protein synthesis. Further evidence is that in aortic smooth muscle cells in culture, ANG II stimulates [3H]thymidine incorporation but the effect depends on the types of cell cultures used and the presence of serum or platelet-derived growth factor or epidermal growth factor.5 Thus the growth action of ANG II may depend on its ability to stimulate other growth factors. Majesky et al. 6 showed that transforming growth factor-β (TGF-β) mRNA expression in the blood vessel wall was increased after vascular injury. The neointimal smooth muscle cells had positive staining for TGF-β, and taken together these studies suggest that angiotensin in the vascular wall stimulates paracrine production of TGF-β and other growth factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Naftilan RE, Dzau DVJ: Induction of platelet derived growth factor A-chain and C-myc gene expression by angiotensin in cultured rat vascular smooth muscle cells. J Clin Invest 83:419–1424, 1989.

    Article  Google Scholar 

  2. Powell JS, Clozel JP, Muller RKM, et al: Inhibitors of angiotensin converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186–188, 1989.

    Article  PubMed  CAS  Google Scholar 

  3. Osterreider W, Muller RKM, Powell JS, et al: Role of angiotensin II in injury induced neointima formation in rats. Hypertension 18(2):6–64, 1991.

    Google Scholar 

  4. Powell JS, Muller RKM, Baumgartner HR: Suppression of the vascular response to injury.The role of angiotensin converting enzyme inhibitors. J Am Coll Cardiol 17:137B–142B, 1991.

    Article  PubMed  CAS  Google Scholar 

  5. Stouffer GA, Owens GK: Angiotensin II-induced mitogenesis of spontaneously hypertensive rat-derived cultured smooth muscle cells is dependent on autocrine production of transforming growth factor-β. Circ Res 70:820–828, 1992.

    Article  PubMed  CAS  Google Scholar 

  6. Majesky MW, Lidner V, Twardzik DR, et al: Production of transforming growth factor β-1 during repair of arterial injury. J Clin Invest 88:904–910, 1991.

    Article  PubMed  CAS  Google Scholar 

  7. Chiu AT, Herblin WF, McCall DE, et al: Identification of angiotensin II receptor subtypes. Biochem Biophys Res Commun 165:196–202, 1989.

    Article  PubMed  CAS  Google Scholar 

  8. Millan MA, Carvello P, Izumi SJ, et al: Novel sites of expression of functional angiotensin II receptors in the late gestation fetus. Science 244:1340–1342, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Tsutsumi K, Saavedra JM: Differential development of angiotensin II receptor subtypes in the rat brain. Endocrinology 128:630, 1992.

    Article  Google Scholar 

  10. Johnson CM, Aguilera G: Angiotensin II receptor subtypes and coupling to signaling systems in cultured fetal fibroblasts. Endocrinology 129:1266–1274, 1991.

    Article  PubMed  CAS  Google Scholar 

  11. Phillips MI, Kimura B, Krim AJ, et al: Angiotensin II in skin may act as a growth factor and enhance wound healing. FASEB J 5:904, 1991.

    Google Scholar 

  12. Kimura B, Sumners C, Phillips MI: Changes in skin angiotensin II receptors in rats during wound healing. Biochem Biophys Res Commun 187:1083–1090, 1992.

    Article  PubMed  CAS  Google Scholar 

  13. Viswanathan M, Saavedra JM: Expression of angiotensin II AT2 receptors in the rat skin during experimental wound healing. Peptides 13:783–786, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Dzau VJ, Burt DW, Pratt RE: Molecular biology of the renin—angiotensin system. Am J Physiol 255:F563, 1988.

    PubMed  CAS  Google Scholar 

  15. Ekker M, Tronik D, Reugeon F: Extrarenal transcription of the renin genes in multiple tissues of mice and rats. Proc Natl Acad Sci USA 86:5155–5158, 1989.

    Article  PubMed  CAS  Google Scholar 

  16. Phillips MI, Speakman EA, Kimura B: Levels of angiotensin and molecular biology of the tissue renin-angiotensin systems. Regul Pept 43:1–20, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Phillips MI, Stenstrom B: Angiotensin II in rat brain comigrates with authentic angiotensin II in HPLC. Circ Res 56:212–219, 1985.

    Article  PubMed  CAS  Google Scholar 

  18. Phillips MI, Kimura B, Raizada MK: Measurements of brain peptides: Angiotensin and ANP in tissue and cell cultures. Methods Neurosci 6:177–206, 1991.

    CAS  Google Scholar 

  19. Hermann K, Ring J, Phillips MI: Presence of angiotensin peptides in human urine. J Chrom Sci 28:524–528, 1990.

    CAS  Google Scholar 

  20. Reuben E, Farber, JL: Pathology. Lippencott, Philadelphia, 1988

    Google Scholar 

  21. Ignotz RA, Massague J: Transforming growth factor-β stimulates the expression of fi-bronectin and collagen and their incorporation into the extracellular matrix. J Bio Chem 261(9):4337–4345, 1986.

    CAS  Google Scholar 

  22. Mustoe TA, Pierce GF, Thomason A, et al: Accelerated healing of incisional wounds in rats induced by transforming growth factor-β. Science 237:1333–1336, 1987.

    Article  PubMed  CAS  Google Scholar 

  23. Catt KJ, Sandberg K, Balla T: Angiotensin II receptors and signal transduction mechanisms.In Raizada MK, Phillips MI, Sumners C (eds): Cellular and Molecular Biology of the Renin-Angiotensin System. CRC Press, Boca Raton, Florida, 1993, pp. 307–356.

    Google Scholar 

  24. Gyurko R, Kimura B, Kurian P, et al: Angiotensin II receptor subtypes play opposite roles in regulating phosphatidylinositol hydrolysis in rat skin slices. Biochem Biophys Res Commun 186:285–292, 1992.

    Article  PubMed  CAS  Google Scholar 

  25. Aguilera G, Johnson MC, Feuillan P, et al: Developmental expression of angiotensin receptors: Distribution, characterization and coupling mechanisms. In Raizada MK, Phillips MI, Sumners C (eds): Cellular and Molecular Biology of Renin-Angiotensin System. CRC Press, Boca Raton, Florida, 1993, pp. 413–431.

    Google Scholar 

  26. Wakui M, Osipchuk TV, Petersen OH: Receptor activated cytoplasmic Ca2+ induced Ca2spiking mediated by inositol triphosphate is due to Ca2+ induced Ca2 release. Cell 63:1026, 1990.

    Article  Google Scholar 

  27. Taubman MB, Burke BC, Izumo S, et al: Angiotensin II induces c-fos mRNA in aortic smooth muscle: Role of Ca2+ mobilization and protein kinase C activation. J Biol Chem 264:526, 1989.

    PubMed  CAS  Google Scholar 

  28. Gibbons GH, Pratt RE, Dzau VJ: Vascular smooth muscle cell hypertrophy vs. hypoplasia.Autocrine transforming growth factor-β 1 expression determines growth factor to angiotensin II. J Clin Invest 90:456–461, 1992.

    Article  PubMed  CAS  Google Scholar 

  29. Rizzino A: Transforming growth factor-β multiple effects on cell differentiation and extracellular metroses. Dev Biol 130:411–422, 1988.

    Article  PubMed  CAS  Google Scholar 

  30. Wahl SM, Hunt DA, Wakefield LM, et al: Transforming growth factor-β produces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA 84:5788, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Postlethwaite AE, Keski-Oja J, Moses HL, et al: Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor-β. J Exp Med 1675:251, 1987.

    Article  Google Scholar 

  32. Chomczynski P, Sacchi M: Single step method of RNA isolation by acid guanidium thiocyn-ate phenyl chloroform extraction. Anal Biochem 162:156, 1987.

    Article  PubMed  CAS  Google Scholar 

  33. Qian SW, Kondaiah P, Roberts AB, et al: cDNA cloning by PCR of rat transferring growth factor-β-1. Nucleic Acids Res 18(10):3059, 1990.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Phillips, M.I., Kimura, B., Gyurko, R. (1994). Angiotensin Receptor Stimulation of Transforming Growth Factor-β in Rat Skin and Wound Healing. In: Saavedra, J.M., Timmermans, P.B.M.W.M. (eds) Angiotensin Receptors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2464-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2464-9_21

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6049-0

  • Online ISBN: 978-1-4615-2464-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics