Skip to main content

Angiotensin Antagonists in Models of Heart Failure

  • Chapter
Angiotensin Receptors
  • 98 Accesses

Abstract

Occlusion of the left main coronary artery in rats results in a segmental loss of viable myocardium from the anterior lateral aspect of the left ventricular free wall.1–6 The extent and location of the tissue loss is the major determinant in the subsequent depression of cardiac performance following the acute event.1–6 If myocardial necrosis is extensive, i.e., encompassing greater than 40% of the ventricular free wall, left ventricular failure rapidly ensues, often with substantial involvement of right side performance and cardiac congestive failure.1–6 Anatomically, large infarctions precipitate considerable rearrangements in ventricular architecture as evidenced by wall thinning as a result of side-to-side slippage of myocytes and chamber dilatation in both the transverse as well as the longitudinal dimension.4,7,8 In an attempt to maintain normal pump function, activation of the renin—angiotensin system during conditions of infarction-induced cardiac decompensation engenders increases in circulating levels of angiotensin II (ANG II), a major pressor agent.9–12 To reduce the work load on this already compromised ventricle and possibly prevent the associated detrimental changes in chamber geometry, prevention of metabolic conversion of ANG I to ANG II by carboxypeptidase inhibitors (i.e., angiotensin-convert-ing enzyme, or ACE, inhibitors) have been employed both clinically12 and experimentally.12–16 Although ACE inhibitors like captopril12–16 have been quite effective in ameliorating the damaging effects of myocardial infarction, undesirable side effects occur from the therapeutic use of these nonspecific kinases.17–19 With this in mind, compounds have been sought that block specifically the ANG II receptor on cardiac cells. Blockade of this AT1 receptor has been effectively accomplished by a 2-n-butyl-4-chloro-5-hydroxymethyl-1-[2′-(1H-tetrazol-5yl)biphenyl-4yl) methyl]imidazole potassium salt,34 manufactured by DuPont (losartan or DuP 753).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anversa P, Loud AV, Levicky V, et al: Left ventricular failure induced by myocardial infarction. I. Myocyte hypertrophy. Am J Physiol 248:H876–H882, 1985.

    PubMed  CAS  Google Scholar 

  2. Anversa P, Beghi C, Kikkawa Y, et al: Myocardial infarction in rats: Infarct size, myocyte hypertrophy and capillary growth. Cir Res 58:26–37, 1986.

    Article  CAS  Google Scholar 

  3. Bing OHL, Brooks WW, Conrad CH, et al: Myocardial mechanics of infarcted and hypertro-phied non-infarcted myocardium following experimental coronary artery occlusion. In Jacob R, Gulch RW, Kissling G, (eds):Cardiac Adaptation to Hemodynamic Overload, Training and Stress. Dr. Dietrich Steinkopff, Darmstadt, 1983, pp. 265–276.

    Google Scholar 

  4. Capasso JM, Li P, Zhang X, et al: Heterogeneity of ventricular remodeling after acute myocardial infarction in rats. Am J Physiol 262:H486–H495, 1992.

    PubMed  CAS  Google Scholar 

  5. Fletcher PJ, Pfeffer JM, Pfeffer MA, et al: Left ventricular diastolic pressure-volume relations in rats with healed myocardial infarction. Circ Res 49:618–626, 1981.

    Article  PubMed  CAS  Google Scholar 

  6. Pfeffer MA, Pfeffer JM, Fishbein MC, et al: Myocardial infarct size and ventricular function in rats. Circ Res 44:503–512, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Olivetti G, Capasso JM, Sonnenblick EH, et al: Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res 67:23–34, 1990.

    Article  PubMed  CAS  Google Scholar 

  8. Olivetti G, Capasso JM, Meggs LG, et al: Cellular basis of ventricular remodeling after myocardial infarction in rats. Circ Res 68:856–869, 1991.

    Article  PubMed  CAS  Google Scholar 

  9. Baker KM, Chernin MI, Wixon SK, et al: Renin—angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:H324–H332, 1990.

    PubMed  CAS  Google Scholar 

  10. Honig CR: Cardiac Mechanics. In Honig CR (ed): Modern Cardiovascular Physiology. Little, Brown, Boston, 1988, pp. 3–49.

    Google Scholar 

  11. Hirsch AT, Tolsness CE, Schunkert H, et al: Tissue specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69:475–482, 1991.

    Article  PubMed  CAS  Google Scholar 

  12. Lindpaintner K, Ganten D: The cardiac renin-angiotensin system. An appraisal of present experimental and clinical evidence. Circ Res 68:905–921, 1991.

    Article  PubMed  CAS  Google Scholar 

  13. Linz W, Schoelkens BA, Ganten D: Converting enzyme inhibition specifically prevents the development and induces the regression of cardiac hypertrophy in rats. Clin Exp Hypertens 11:1325–1350, 1989.

    Article  CAS  Google Scholar 

  14. Pfeffer JM, Pfeffer MA, Braunwald E: Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57:84–95, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Pfeffer MA, Pfeffer JM, Steinberg C, et al: Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 72:406–412, 1985.

    Article  PubMed  CAS  Google Scholar 

  16. Pfeffer JM, Pfeffer MA, Fletcher PJ, et al: Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260:H1406–H1414, 1991.

    PubMed  CAS  Google Scholar 

  17. Johnston CI, Clappison BH, Anderson WP, et al: Effect of angiotensin converting enzyme inhibition on circulating and local kinin levels. Am J Cardiol 49:1401–1404, 1982.

    Article  PubMed  CAS  Google Scholar 

  18. Mimran A, Targhetta R, Laroche B: The antihypertensive effect of captopril. Evidence for an influence of kinins. Hypertension 2:732–737, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Zusman RM: Renin and nonrenin mediated antihypertensive action of converting enzyme inhibition. Kidney Int 25:969–983, 1984.

    Article  PubMed  CAS  Google Scholar 

  20. Buttrick P, Perla C, Malhotra A, et al: Effects of chronic dobutamine on cardiac mechanics and biochemistry after myocardial infarction in rats. Am J Physiol 260:H473–H484, 1991.

    PubMed  CAS  Google Scholar 

  21. Geenen DL, Malhotra A, Scheuer J: Regional variation in rat cardiac myosin isoenzymes and ATPase activity following infarction. Am J Physiol 256:H745–H750, 1989.

    PubMed  CAS  Google Scholar 

  22. Pfeffer MA, Braunwald E: Ventricular remodeling after myocardial infarction: Experimental observations and clinical implication. Circulation 81:1161–1172, 1990.

    Article  PubMed  CAS  Google Scholar 

  23. Jalil JE, Janicki JS, Pick R, et al: Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension. Response to captopril Am J Hypertens 4:51–55, 1991.

    PubMed  CAS  Google Scholar 

  24. Oberpriller JW, Ferrans VJ, Carroll RJ: Changes in DNA content, number of nuclei and cellular dimension of young rat atrial myocytes in response to left coronary artery ligation. J Mol Cell Cardiol 15:31–42, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Olivetti G, Ricci R, Anversa P: Hyperplasia of myocyte nuclei in long-term cardiac hypertrophy in rats. J Clin Invest 80:1818–1822, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Anversa P, Palackal T, Sonnenblick EH, et al: Hypertensive cardiomyopathy: Myocyte nuclei hyperplasia in the mammalian heart. J Clin Invest 85:994–997, 1990.

    Article  PubMed  CAS  Google Scholar 

  27. Anversa P, Palackal T, Sonnenblick EH, et al: Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ Res 67:871–885, 1990.

    Article  PubMed  CAS  Google Scholar 

  28. Claycomb WC, Moses RL: Growth factor and TPA stimulate DNA synthesis and alter the morphology of cultured terminally differentiated adult rat cardiac muscle cells. Dev Biol 127:257–265, 1988.

    Article  PubMed  CAS  Google Scholar 

  29. Marino TA, Haldar S, Williamson EC, et al: Proliferating cell nuclear antigen in developing and adult rat cardiac muscle cells. Circ Res 69:1353, 1360, 1991.

    Article  PubMed  CAS  Google Scholar 

  30. Olivetti G, Ricci R, Lagrasta C, et al: The cellular basis of wall remodeling in long-term pressure overload induced right ventricular hypertrophy in rats. Circ Res 63:648–657, 1988.

    Article  PubMed  CAS  Google Scholar 

  31. Capasso JM, Palackal T, Olivetti G, et al: Left ventricular failure induced by long-term hypertension in rats. Circ Res 66:1400–1412, 1990.

    Article  PubMed  CAS  Google Scholar 

  32. Capasso JM, Palackal T, Olivetti G, et al: Severe myocardial dysfunction induced by ventricular remodeling in the aging rat heart. Am J Physiol 259:H1086–H 1096, 1990.

    PubMed  CAS  Google Scholar 

  33. Grimm AF, Lin HL, Grimm BR: Left ventricular free wall and intraventricular pressure sarcomere length distribution. Am J Physiol 239:H101–H107, 1980.

    PubMed  CAS  Google Scholar 

  34. Mirsky I: Ventricular and arterial wall stresses based on large deformation analyses. Biophys J 13:1141–1159, 1973.

    Article  PubMed  CAS  Google Scholar 

  35. Anversa P, Fitzpatrick D, Argani S, et al: Myocyte mitotic division in the aging mammalian rat heart. Circ Res 69:1159–1164, 1991.

    Article  PubMed  CAS  Google Scholar 

  36. Capasso JM, Fitzpatrick D, Anversa P: Cellular mechanisms of ventricular failure: Myocyte kinetics and geometry with age. Am J Physiol 262:H1770–H1781, 1992.

    PubMed  CAS  Google Scholar 

  37. Capasso JM, Anversa P: Mechanical performance and morphometric characteristics of spared myocytes after acute myocardial infarction in rats: Effects of captopril treatment. Am J Physiol 263:H841–H849, 1992.

    PubMed  CAS  Google Scholar 

  38. Butler WB: Preparing nuclei from cells in monolayer cultures suitable for counting and for following synchronized cells through the cell cycle. J Cell Physiol 141:70–73, 1984.

    CAS  Google Scholar 

  39. Darzynkiewicz Z: Differential staining of DNA and RNA in intact cells and isolated cell nuclei with acridine orange. In Darzynkiewicz Z (ed): Methods in Cell Biology. Academic Press, New York, 1991, pp. 285–298.

    Google Scholar 

  40. Bruno S, Darzynkiewicz Z: Cell cycle dependent expression and stability of the nuclear protein detected by Ki-67 antibody in HL-60 cells. Cell Prolif 25:457–467, 1992.

    Article  Google Scholar 

  41. Snedecor S, Cochran WG: Statistical Methods, 7th ed. Iowa University Press, Ames, 1980

    Google Scholar 

  42. Wallenstein S, Zucker CL, Fleiss FL: Some statistical methods useful in circulation research. CircRes 47:1–9, 1980.

    CAS  Google Scholar 

  43. Hirakata H, Fouad-Tarazi FM, Bumpus FM, et al: Angiotensins and the failing heart. Enhanced positive inotropic response to angiotensin I in cardiomyopathic hamster heart in the presence of captopril. Circ Res 66:891–899, 1990.

    Article  PubMed  CAS  Google Scholar 

  44. Urata U, Healy B, Stewart RW, et al: Angiotensin II forming pathways in normal and failing human hearts. Circ Res 66:883–890, 1990.

    Article  PubMed  CAS  Google Scholar 

  45. Urata U, Healy B, Stewart RW, et al: Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab 69:54–66, 1989.

    Article  PubMed  CAS  Google Scholar 

  46. Urata U, Kinoshita A, Misono KS, et al: Identification of a highly specific chymase as the major angiotensin II forming enzyme in the human heart. J Biol Chem 265:22348–22357, 1990.

    PubMed  CAS  Google Scholar 

  47. Urata U, Kinoshita A, Perez DM, et al: Cloning of the gene and cDNA for human heart chymase. J Biol Chem 266:17173–17179, 1991.

    PubMed  CAS  Google Scholar 

  48. Capasso JM, Li P, Meggs LG, et al: Alterations in angiotensin II responsiveness in left and right myocardium after infarction induced heart failure in rats. Am J Physiol 264:H2056–H2067, 1993.

    PubMed  CAS  Google Scholar 

  49. Capasso JM, Malhotra A, Scheuer J, et al: Myocardial biochemical, contractile and electrical performance after imposition of hypertension in young and old rats. Circ Res 58:445–460, 1986.

    Article  PubMed  CAS  Google Scholar 

  50. Capasso JM, Strobeck JE, Malhotra A, et al: Contractile behavior of rat myocardium after reversal of hypertensive hypertrophy. Am J Physiol 242:H882–H889, 1982.

    PubMed  CAS  Google Scholar 

  51. Barany M: ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50:197–216, 1967.

    Article  PubMed  Google Scholar 

  52. Grossman W, Jones D, McLaurin LP: Wall stress patterns of hypertrophy in the human left ventricle. J Clin Invest 56:56–64, 1975.

    Article  PubMed  CAS  Google Scholar 

  53. Sonnenblick EH, Strobeck JE, Capasso JM, et al: Ventricular hypertrophy: Models and methods. Perspect Cardiovasc Res 8:13–20, 1983.

    Google Scholar 

  54. Malhotra A: Regulatory proteins in hamster cardiomyopathy. Circ Res 66:1302–1309, 1990.

    Article  PubMed  CAS  Google Scholar 

  55. Bugaisky LB, Anderson PG, Hall RS, et al: Differences in myosin isoform expression in the subepicardial and subendocardial myocardium during cardiac hypertrophy in the rat. Circ Res 66:1127–1132, 1990.

    Article  PubMed  CAS  Google Scholar 

  56. Kent RL, Mann DL, Urabe Y, et al: Contractile function of isolated feline cardiocytes in response to viscous loading. Am J Physiol 257:H1717–H1727, 1989.

    PubMed  CAS  Google Scholar 

  57. Pfeffer MA, Lamas GA, Vaughan DE, et al: Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 319:80–86, 1988.

    Article  PubMed  CAS  Google Scholar 

  58. Anversa P, Beghi C, McDonald SL, et al: Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat. Am J Pathol 116:504–513, 1984.

    PubMed  CAS  Google Scholar 

  59. Rumyantsev PP, Kassem AM: Cumulative indices of DNA synthesizing myocytes in different compartments of the working myocardium and conductive system of the rat heart muscle following extensive left ventricular infarction. Virchows Arch B Cell Pathol 20:329–342, 1976.

    PubMed  CAS  Google Scholar 

  60. Olivetti G, Quaini F, Lagrasta C, et al: Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia-induced myocardial dysfunction in rats. Am J Pathol 141:227–240, 1992.

    PubMed  CAS  Google Scholar 

  61. Linzbach AJ: Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382, 1960.

    Article  PubMed  CAS  Google Scholar 

  62. Astorri E, Chizzola A, Visioli O, et al: Right ventricular hypertrophy: A cytometric study on 55 human hearts. J Mol Cell Cardiol 2:99–110, 1971.

    Article  PubMed  CAS  Google Scholar 

  63. Astorri E, Bolognesi R, Colla B, et al: Left ventricular hypertrophy: A cytometric study on 42 human hearts. J Mol Cell Cardiol 9:763–775, 1977.

    Article  PubMed  CAS  Google Scholar 

  64. Anversa P, Zhang Z, Li P, et al: Chronic coronary artery constriction leads to moderate myocyte loss and left ventricular dysfunction and failure in rats. J Clin Invest 89:618–629, 1992.

    Article  PubMed  CAS  Google Scholar 

  65. Olivetti G, Melissari M, Capasso JM, et al: Cardiomyopathy of the aging human heart: Myocyte loss and reactive cellular hypertrophy. Circ Res 68:1560–1568, 1991.

    Article  PubMed  CAS  Google Scholar 

  66. DeFelice A, Frering R, Horan P: Time course of hemodynamic changes in rats with healed severe myocardial infarction. Am J Physiol 257:H289–H296, 1989.

    Google Scholar 

  67. Pfeffer JM, Pfeffer MA, Mirsky I, et al: Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc Natl Acad Sci USA 79:3310–3314, 1982.

    Article  PubMed  CAS  Google Scholar 

  68. Zierhut W, Zimmer H-G, Gerdes AM: Effect of angiotensin converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ Res 69:609–617, 1991.

    Article  PubMed  CAS  Google Scholar 

  69. Ginzton LE, Conant R, Rodriques DM, et al: Functional significance of hypertrophy of the noninfarcted myocardium after myocardial infarction in humans. Circulation 80:816–822, 1989.

    Article  PubMed  CAS  Google Scholar 

  70. Anversa P, Sonnenblick EH: Ischemic cardiomyopathy: Pathophysiologic mechanisms. Prog Cardiovasc Dis 33:49–70, 1990.

    Article  PubMed  CAS  Google Scholar 

  71. Capasso MJ, et al: Ventricular loading is coupled with DNA synthesis in adult cardiac myocytes after acute and chronic myocardial infarction in rats. Circ Res 71:1379–1389, 1992.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Capasso, J.M. (1994). Angiotensin Antagonists in Models of Heart Failure. In: Saavedra, J.M., Timmermans, P.B.M.W.M. (eds) Angiotensin Receptors. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2464-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2464-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6049-0

  • Online ISBN: 978-1-4615-2464-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics