Second Virial Coefficient for One-Dimensional Systems

  • P. Kurasov
  • V. Kurasov
  • B. Pavlov
Part of the NATO ASI Series book series (NSSB, volume 324)


Exactly solvable models are very important in modern statistical physics. Such models can give essential information about investigating physical objects. Unfortu nately these models can not posses all properties of real systems. But exact analytical solutions permit us to calculate very important quantities, which can not be done for the real ones, or can be done only numerically. One of the most popular models in statistical mechanics is the model of hard core spheres. This model has been used to in vestigate properties of the second ([8,9]) and third ([10]) virial coefficients. Even phase transitions can be observed in this model [7].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H.Holden, “Solvable Models in Quantum Me-chanics,” Springer-Verlag, Berlin, New-York, 1988.CrossRefGoogle Scholar
  2. 2.
    F.A. Berezin and L.D. Faddeev, A remark on Schroedinger’s equation with a singular potential, Soviet Math. Dokl. ,2, 372 (1961).MATHGoogle Scholar
  3. 3.
    V.S. Buslaev, S.P. Merkuriev and S.P. Salikov, On the diffraction character of the scattering in the quantum system of three one-dimensional particles, in: “Problems of Mathematical Physics”, 9, Leningrad Univ. Press (in Russian) 1979.Google Scholar
  4. 4.
    Yu.N. Demkov and V.N. Ostrovskii, “Zero-Range Potentials and their Applications in Atomic Physics,” Plenum Press, New-York, London, 1988.CrossRefGoogle Scholar
  5. 5.
    E. Fermi, Sul moto dei neutroni nelle sostanze idrogenate, Ricerca Scientifica, 7 ,13 (1936).Google Scholar
  6. 6.
    L.D. Faddeev, Inverse problem in the quantum theory of scattering, Uspekhi Mat. Nauk ,14, 57 (1959); English Translation: J. Math. Phys. ,4, 73 (1963).MathSciNetMATHGoogle Scholar
  7. 7.
    M. Gorzelanczyk, Phase transition in a gas of hard core spheres, Commun. Math. Phys. ,136, 43 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    B. Jancovici, Quantum-mechanical equation of state of a hard-sphere gas at high temperature, Phys. Rev ,178, 195 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    B. Jancovici, Quantum-mechanical equation of state of a hard-sphere gas at high temperature II, Phys. Rev ,184, 119 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    B. Jancovici and S.P. Merkuriev, Quantum-Mechanical third virial coefficient of a hard-sphere gas at high temperatures, Preprint LPTHE 75/14 (1975).Google Scholar
  11. 11.
    B. Kahn and G.E. Ulenbeck, Physica ,5, 399 (1938).ADSCrossRefGoogle Scholar
  12. 12.
    P. Kurasov, Inverse scattering problem and zero-range potentials with internal structures, Lett. Math. Phys. ,25, 287 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    P. Kurasov, Scattering theory for three one dimensional particles, Preprint MSI 92-10, ISSN-1100-214X (1992).Google Scholar
  14. 14.
    B.S. Pavlov, A model of zero-radius potential with internal structure, Teor. Mat. Fiz. ,59, 345 (1984).CrossRefGoogle Scholar
  15. 15.
    B.S. Pavlov, The theory of extensions and explicitly-solvable models, Russ. Math. Surv. ,42, 127 (1987).MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • P. Kurasov
    • 1
    • 2
  • V. Kurasov
    • 1
  • B. Pavlov
    • 1
  1. 1.Dept. of Math, and Comp. PhysicsSt Petersburg Univ.Russia
  2. 2.Stockholm Univ.StockholmSweden

Personalised recommendations