Skip to main content

Multifractal Properties of Discrete Stochastic Mappings

  • Chapter
On Three Levels

Part of the book series: NATO ASI Series ((NSSB,volume 324))

  • 550 Accesses

Abstract

In different fields of statistical physics, such as Id random field Ising models (RFIM) and neural networks, there appear discrete stochastic mappings of the form

$${x_n} = {f_n}({x_{n - 1}})$$
((1))

where f n(x) is chosen with equal probability from two functions fσ(x), σ = + or -, and 0 < f′ σ(x) ≤ 1. The dynamics is nonchaotic and, in a region of physical parameters, converges to a strange (fractal) attractor as may be visualized in Fig. 1. The mapping generates an invariant measure which undergoes, as parameters are changed, qualitative transitions, for instance, a transition from thin to fat multifractal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Györgyi and P. Rujàn, Strange attractors in disordered systems, J. Phys. C ,17, 4207 (1984).

    Article  ADS  Google Scholar 

  2. U. Behn and V.A. Zagrebnov, One-dimensional random field Ising model and discrete stochastic mappings, J. Stat. Phys. ,47, 939 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. U. Behn and V.A. Zagrebnov, One-dimensional Markovian field Ising model: Physical properties and characteristics of the discrete stochastic mapping, J. Phys. A ,21, 2151 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. U. Behn and V.A. Zagrebnov, Comment on “Random-field Ising model as a dynamical system”, Phys. Rev. B ,38, 7115 (1988)

    Article  ADS  Google Scholar 

  5. U. Behn, V.B. Priezzhev, and V.A. Zagrebnov, One dimensional random field Ising model: Residual entropy, magnetization, and the “perestroyka” of the ground state, Physica A ,167, 457 (1990).

    Article  Google Scholar 

  6. P. Szépfalusy and U. Behn, Calculation of a characteristic fractal dimension in the one-dimensional random field Ising model, Z. Phys. B ,65, 337 (1987).

    Article  ADS  Google Scholar 

  7. J. Bene and P. Szépfalusy, Multifractal properties in the one-dimensional random field Ising model, Phys. Rev. A ,37, 1702 (1988)

    ADS  Google Scholar 

  8. J. Bene, Multifractal properties of a class of non-natural measures as an eigenvalue problem, Phys. Rev. A ,39, 2090 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  9. T. Tanaka, H. Fujiska, and M. Inoue, Free-energy fluctuations in a one-dimensional random Ising model, Phys. Rev. A ,39, 3170 (1989); Scaling structures of free-energy fluctuations in a one-dimensional dilute Ising model, Progr. Theor. Phys. ,84, 584 (1990).

    Article  ADS  Google Scholar 

  10. U. Behn and A. Lange, 1D random field Ising model and nonlinear dynamics, in: “From Phase Transition to Chaos,” G. Györgyi, I. Kondor, L. Sasvári, and T. Tel, eds., World Scientific, Singapore (1992).

    Google Scholar 

  11. J.L. van Hemmen, G. Keller, and R. Kühn, Forgetful memories, Europhys. Lett. ,5, 663 (1988).

    Article  ADS  Google Scholar 

  12. U. Behn, J.L. van Hemmen, R. Kühn, A. Lange, and V.A. Zagrebnov, Multifractality in forgetful memories, Physica D ,68, (1993).

    Google Scholar 

  13. P.C. Bressloff, Analysis of quantal synaptic noise in neural networks using iterated function systems, Phys. Rev. A ,45, 7549 (1992).

    Article  ADS  Google Scholar 

  14. T.C. Halsey, M.H. Jensen, I. Procaccia, and B.I. Shraiman, Fractal measures and their singu larities: The characterization of strange sets, Phys. Rev. A ,33, 1141 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  15. H.B. Lin, “Elementary Symbolic Dynamics and Chaos in Dissipative Systems,” World Scientific, Singapore (1989).

    MATH  Google Scholar 

  16. M.J. Feigenbaum, I. Procaccia, and T. Tel, Scaling properties of multifractals as eigenvalue problem, Phys. Rev. A ,39, 5359 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  17. G. Radons, H.G. Schuster, and D. Werner, Fractal measures and diffusion as results of learning in neural networks, Phys. Lett. A ,174, 293 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  18. G. Radons, A new transition for projections of multifractal measures and random maps, J. Stat. Phys. ,72, 227 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Behn, U., van Hemmen, J.L., Kühn, R., Lange, A., Zagrebnov, V.A. (1994). Multifractal Properties of Discrete Stochastic Mappings. In: Fannes, M., Maes, C., Verbeure, A. (eds) On Three Levels. NATO ASI Series, vol 324. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2460-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2460-1_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6047-6

  • Online ISBN: 978-1-4615-2460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics