The Spectrum of the Spin-Boson Model

  • M. Hübner
  • H. Spohn
Part of the NATO ASI Series book series (NSSB, volume 324)

Abstract

Many physical problems can be described as a single (or a few) degrees of freedom interacting with a free field, regarded as a bath or reservoir. It is commonly assumed that a nontrivial coupling to the field serves as a mechanism for the small system to dissipate its energy. This somewhat vague formulation should be made precise by mathematical physics and we take here the point of view that it is reflected in the spectrum of the coupled Hamiltonian.

Keywords

Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Leggett et al., Rev. Mod. Phys. ,59, 1 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    H. Spohn and R. Dümcke, J. Stat. Phys. ,41, 389 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    H. Spohn, Comm. Math. Phys. ,123, 277 (1989).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    M. Fannes, B. Nachtergaele and A. Verbeure, J. Phys. A ,21, 1759 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    M. Fannes, B. Nachtergaele and A. Verbeure, Comm. Math. Phys. ,114, 537 (1988).MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, “Schrödinger Operators”, Springer, Berlin (1987).MATHGoogle Scholar
  7. 7.
    E. Mourre, Comm. Math. Phys. ,78, 391 (1981).MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    R. Froese and I. Herbst, Duke Math. J. ,49, 1075 (1982).MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    M. Hübner and H. Spohn, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Hübner
    • 1
  • H. Spohn
    • 1
  1. 1.Theoretische PhysikLMUMünchenGermany

Personalised recommendations