Advertisement

Integrable S=1/2 Quantum Spin Chains with Short-Range Exchange

  • V. I. Inozemtsev
Part of the NATO ASI Series book series (NSSB, volume 324)

Abstract

The ID lattice spin chains, being the simplest quantum many-body systems, are still considered as objects for intensive study due to their relations to more realistic models in quantum statistics. As a rule, even for these systems the spectral problem is overcomplicated. The rare cases of its reduction are associated with the quantum integrability. Most of them concern the famous situation of nearest- neighbor or “local” interaction considered first by Bethe [1] and have the solution in the form of the Bethe ansatz [1–4].

Keywords

Symmetric Space Spin Chain Quantum Integrability Quantum Spin Chain Ferromagnetic Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Bethe, Z.Phys. 71, 205 (1931).ADSCrossRefGoogle Scholar
  2. 2.
    R.J. Baxter. “Exactly Solved Models in Statistical Mechanics,” Academic Press, New York (1982).MATHGoogle Scholar
  3. 3.
    M. Gaudin, “La Fonction d’ Onde de Bethe,” Masson, Paris (1983).MATHGoogle Scholar
  4. 4.
    L.D. Faddeev, “Recent Advances in Field Theory and Statistical Mechanics,” pp.561–608, North-Holland, Amsterdam (1984).Google Scholar
  5. 5.
    F. Calogero, Lett. Nuovo Cim.13 ,411 (1975)MathSciNetCrossRefGoogle Scholar
  6. 5.
    J.Moser, Adv. Math. 16, 1 (1975).ADSCrossRefGoogle Scholar
  7. 6.
    M.A. Olshanetsky and A.M. Perelomov, Phys. Rep. 94, 313 (1983).MathSciNetADSCrossRefGoogle Scholar
  8. 7.
    E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963).MathSciNetADSMATHCrossRefGoogle Scholar
  9. 8.
    J.B. McGuire, J. Math. Phys. 5, 622 (1964).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 9.
    C.N. Yang, Phys. Rev.168 ,1920 (1968).ADSCrossRefGoogle Scholar
  11. 10.
    V.I. Inozemtsev, J. Stat. Phys. 59, 1143 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 11.
    V.I. Inozemtsev, Comm. Math. Phys. 148, 359 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  13. 12.
    F.D.M. Haldane, Phys. Rev. Lett. 60, 635 (1988); ibid 66, 1529 (1991).MathSciNetADSCrossRefGoogle Scholar
  14. 13.
    B.S. Shastry, Phys. Rev. Lett. 60, 639 (1988).ADSCrossRefGoogle Scholar
  15. 14.
    F.D.M. Haldane et al.,Phys. Rev. Lett. 69, 2021 (1992).MathSciNetADSMATHCrossRefGoogle Scholar
  16. 15.
    S. Helgason, “Differential Geometry, Lie Groups and Symmetric Spaces,” Academic Press, New York (1978).MATHGoogle Scholar
  17. 16.
    O.A. Chalykh and A.P. Veselov, Comm. Math. Phys. 126, 597 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  18. 17.
    V.I. Inozemtsev, ICTP preprint IC/92/172, to appear in Lett. Math. Phys.Google Scholar
  19. 18.
    B. Sutherland, Phys. Rev. B 12, 3795 (1975).ADSCrossRefGoogle Scholar
  20. 19.
    P. Schlottmann, Phys. Rev. B 36, 5177 (1987).ADSCrossRefGoogle Scholar
  21. 20.
    P. Bares and G. Blatter, Phys. Rev. Lett. 64, 2567 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  22. 21.
    B. Sutherland, Rocky Mountain J. Math. 8, 413 (1978).MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • V. I. Inozemtsev
    • 1
  1. 1.Lab. of Theor. Phys.JINRDubnaRussia

Personalised recommendations