Advertisement

One Dimensional Anomaly of the Fermi Surface

  • G. Gallavotti
Part of the NATO ASI Series book series (NSSB, volume 324)

Abstract

Consider a N-fermions system with hamiltonian, see [1]:
$$H = \sum\limits_{i = 1}^N {{{ - {\Delta _{xi}} - p_F^2} \over {2m}}} + \lambda \sum\limits_{i < j} {v({x_i}} - {x_j})$$
(1)
where m,p F are two fixed parameters, λ is the coupling constant and v is the pair potential, supposed smooth and with short range p 0 −1 .

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Benfatto, G. Gallavotti, A. Procacci and B. Scoppola, Beta function and Schwinger functions for a many fermions system in one dimension. Anomaly of the Fermi surface, To appear in Commun. Math. Phys.Google Scholar
  2. 2.
    P. Anderson, The “infrared catastrophe”: when does it trash Fermi liquid theory?, Preprint , february 1993, Princeton. See also: “Luttinger-liquid” behaviour of the normal metallic state of the 2D Hubbard model, Phys. Rev. Lett. ,64, 1839 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    S. Tomonaga, Remarks on Bloch’s methods of sound waves applied to many fermion problems, Prog. Theor. Phys. ,5, 554 (1950).ADSGoogle Scholar
  4. 4.
    J. Luttinger, An exact soluble model of a many-fermions system, J. Math. Phys. ,4, 1154 (1963).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D. Mattis and E. Lieb, Exact solution of a many fermion system and its associated boson field, J. Math. Phys. ,6, 304 (1965).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E. Caianiello, The number of Feynman graphs and convergence, Nuovo Cimento ,3, 223 (1956).MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Gawedzki and A. Kupiainen, Groos-Neveu model through convergent perturbation expansion, Commun. Math. Phys. ,102, 1 (1985).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    K. Wilson and M. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett ,28, 548 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    G. Gallavotti, Renormalization theory and ultraviolet stability for scalar fields via renormalization group methods, Rev. of Modern Phys. ,57, 471 (1985).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    G. Benfatto and G. Gallavotti, Perturbation theory of the Fermi surface in a quantum liquid. A general quasiparticle formalism and one dimensional systems, J. Stat. Phys. ,59, 541 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    G. Benfatto, G. Gallavotti and V. Mastropietro, Renormalization group and the Fermi surface in the Luttinger model, Phys. Rev. B ,45, 5468 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    G. Gentile and B. Scoppola, Università di Roma, Dipartimento di Fisica, CARR preprint n. 17/92, To appear in Commun. Math. Phys.Google Scholar
  13. 13.
    C. Di Castro and W. Metzner, Ward Identities and the ß Function in the Luttinger Liquid, Phys. Rev. Lett ,67, 3852 (1991).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • G. Gallavotti
    • 1
  1. 1.Dipartimento di FisicaUniversità La SapienzaRomaItalia

Personalised recommendations