Advertisement

Faraday Effect in the Multiple Scattering of Light: A Monte Carlo Simulation

  • A. S. Martinez
  • R. Maynard
Part of the NATO ASI Series book series (NSSB, volume 323)

Abstract

A Monte Carlo simulation is used to obtain the intensity correlation function in the multiple scattering of an incident linearly polarized light in a magneto-optically active medium. The scatterers are finite spheres and each single scattering is calculated by the Mie theory. For the diffusion regime, the results predicted by a simple stochastic theory are verified. On the other hand, in the intermediate regime, the correlation function is described by the one-dimensional model, which explains the origin of the unexpected oscillations of the correlation function.

Keywords

Multiple Scattering Weak Localization Diffusion Regime Intensity Correlation Intermediate Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kuga and A. Ishimaru, J. Opt. Soc. Am. A8, 831 (1984). M.P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985). P.E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985). E. Akkermans, P.E. Wolf and R. Maynard, Lett. 56, 1471 (1986).Google Scholar
  2. 2.
    “Mesoscopic Phenomena in Solids,” ed. B.L. Al’shuler, P.A. Lee and R.A. Webb, North Holland, Amsterdam, (1991).Google Scholar
  3. 3.
    “Classical Wave Localization,” ed. P. Sheng, World Scientific, Singapore, (1990).Google Scholar
  4. 4.
    P.J. Flory, “Statistical Mechanics of Chain Molecules,” John Wiley & Sons, New York, (1969).Google Scholar
  5. 5.
    H.C. van de Hulst, “Light Scattering by Small Particles,” Dover Publications, New York (1981).Google Scholar
  6. 6.
    A.A. Golubenstev, JETP 59, 26 (1984).Google Scholar
  7. 7.
    F.C. MacKintosh and S. John, Phys. Rev. B37, 1884 (1988).Google Scholar
  8. 8.
    F. Erbacher, R. Lenke and G. Maret, Europhys. Lett. 21, 551 (1993).CrossRefGoogle Scholar
  9. 9.
    F. Erbacher, R. Lenke and G. Maret, in: “Localization and Propagation of Waves in Random and Periodic Structures,” ed. C.M. Soukoulis, Plenum Publishing Corporation (to appear).Google Scholar
  10. 10.
    R. Lenke and G. Maret, this issue.Google Scholar
  11. 11.
    F.C. MacKintosh, J.X. Zhu, D.J. Pine and D.A. Weitz, Phys. Rev. B40, 9342 (1989).Google Scholar
  12. 12.
    A.S. Martinez and R. Maynard, in: “Localization and Propagation of Waves in Random and Periodic Structures,” ed. CM. Soukoulis, Plenum Publishing Corporation (to appear).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • A. S. Martinez
    • 1
  • R. Maynard
    • 1
  1. 1.Laboratoire d’Expérimentation Numérique and Centre de Recherche sur les Très Basses TempératuresMaison des Magistères CNRSGrenoble Cedex 9France

Personalised recommendations