Skip to main content

Phonon Patterns of Cubic Crystal Monte Carlo Simulation Program

  • Chapter
Die Kunst of Phonons
  • 62 Accesses

Abstract

The image of crystal provide global information on their internal structure and dynamics. Among them we may mention the neutrongrams, roentgenograms, neutron and x-ray topogrpahs or the sound topographs. With the exception of sound beam topography, the experimental techniques supplying the above images were invented long time ago.In the late seventies Wolfe and collaborators ( cf. [1]) invented the phonon imaging method which produced a global view of energy flux anisotropy in the crystal, called the energy focusing pattern. This method is discussed in this volume by Arthur Every.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alifimoff, J. K., Firestone, L. L., and Miller, K. W. 1989, Anaesthetic potencies of primary alkanols: implications for the molecular dimensions of the anaesthetic site. Br. J. Pharmacol. 96: 9–16.

    Google Scholar 

  • Almeida, L. M., Vaz, W. L. C. Stumpel, J., and Madiera, V. M. C. 1986, Effect of short-chain primary alcohols on fluidity and activity of sarcoplasmic reticulum membranes. Biochemistry 25: 4832–4839.

    Article  Google Scholar 

  • Bell, R. M., and Burns, D. J. 1991, Lipid activation of protein kinase C. J. Biol. Chem. 266: 4661–4664.

    Google Scholar 

  • Bernard, C. 1875 Lecons sur les anesthesiques et sur l’asphyxie. 37a: pp 363.

    Google Scholar 

  • Boggs, J. M. 1987, Lipid interactions and molecular hydrogen bonding. Biochim. Biophys. Acta 906: 353–404.

    Google Scholar 

  • Cevc, G. 1987, How membrane chain melting properties are regulated by the polar surface of the lipid bilayer. Biochemistry 26: 6305–6310.

    Article  Google Scholar 

  • Covarrubias, M. 1993, Ethanol selectively bblocks a non-activating K+ current encoded by Drosophila Shaw2. Biophys. J. 64: A227.

    Google Scholar 

  • Crowe, J. H., and Crowe, L. M. 1984, Effects of dehydration on membranes. Biological Membranes 5: 58–103.

    Google Scholar 

  • Curatola, G., Lenaz, G., and Zolese, G. 1991 Anesthetic-membrane interactions, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 35–70.

    Google Scholar 

  • Curatola, G., Mazzanti, L., Bertoli, E., and Lenaz, G. 1978, The action of general anesthetics on lipid-protein interactions. Bull. Mol. Biol. Med. 3: 123–135.

    Google Scholar 

  • Dluzewski, A. R., Halsey, M. J., and Simmonds, A. C. 1983, Membrane interactions with general and local anesthetics: a review of molecular hypotheses of anesthesia. Molec. Aspects Med. 6: 459–573.

    Article  Google Scholar 

  • Ellingson, J. S., Janes, N., Taraschi, T. F., and Rubin, E. 1991, The effect of chronic ethanol consumption of the fatty acid composition of phosphatidylinositol in rat liver microsomes as determined by gas chromatography and 1H-NMR. Biochim. Biophys. Acta 1062: 199–205.

    Article  Google Scholar 

  • Ellingson, J. S., Taraschi, T. F., Wu, A., Zimmerman, R., and Rubin, E. 1988, Cardiolipin from ethanol-fed rats confers tolerance to ethanol in liver mitochondrial membranes. Proc. Natl. Acad. Science (USA) 85: 3353–3357.

    Article  ADS  Google Scholar 

  • Franks, N. P., and Lieb, W. R. 1982, Moleculr mechanism of general anesthesia. Nature 300: 487–493.

    Article  ADS  Google Scholar 

  • Franks, N. P., and Lieb, W. R. 1984, Do general anesthetics act by competetive binding to specific receptors? Nature 310: 599–601.

    Article  ADS  Google Scholar 

  • Franks, N. P., and Lieb, W. R. 1985, Mapping of general anesthetic target sites provides a molecular basis for cut-off effects. Nature 316: 349–351.

    Article  ADS  Google Scholar 

  • Fraser, D. M., Louro, S. R. W., Horvath, L. I., Miller, K. W., and Watts, A. 1990, A study of the effec of general anesthetics on protein-lipid interactions in acetylcholine receptor enriched membranes. Biochemistry 29: 2664–2669.

    Article  Google Scholar 

  • Goldstein, D. B. 1984, Effect of drugs on membrane fluidity. Ann. Rev. Pharm. Toxicol. 24: 43–64.

    Article  Google Scholar 

  • Grog, P., and Belagyi, J. 1983, The effect of anesthetics on protein conformation in membranes as studied by the spin-labelling technique. Biochim. Biophys. Acta 734: 3198–328.

    Google Scholar 

  • Halsey, M. J., and Smith, E. B. 1970, Effects of anesthetics on luminous bacteria. Nature 227: 1363–1365.

    Article  ADS  Google Scholar 

  • Harris, R. A. and Schroeder, F. 1981, Ethanol and the physical properties of brain membranes. Mol. Pharm. 20: 128–137.

    Google Scholar 

  • Ho, C., and Stubbs, C. D. 1992, Hydration at the hydrophobic membrane protein-lipid interface. Biophys. J. 63: 897–902.

    Article  ADS  Google Scholar 

  • Ho, C., Kelly, M. B., and Stubbs, C. D. 1993, Fluorescence lifetime heterogeneity as a probe of the membrane protein-lipid interface: Effects of increased phospholipid unsaturation and perturbation by ethanol. Biophy. J. (submitted).

    Google Scholar 

  • Ho, C., Williams, B. W., and Stubbs, C. D. 1992, Analysis of cell membrane micro-heterogeneity using the fluorescence lifetime of DPH-type fluorophores. Biochim. Biophys. Acta 1104: 273–282.

    Article  Google Scholar 

  • Hoek, J, B., and Taraschi, T. F. 1988, Cellular adaptation to ethanol. Trends in Biochemical Sciences 13: 269–274.

    Article  Google Scholar 

  • Janes, N., Hsu, J. W., Rubin, E., and Taraschi, T. F. 1992, Nature of alcohol and anesthetic action on cooperative membrane equilibria. Biochemistry 31: 9467–9472.

    Article  Google Scholar 

  • Kaminoh, Y., Nishimura, S., and Ueda, I. 1992, Alcohol interaction with high entropy states of macromolecules: critical temperature hypothesis for anesthesia cut-off. Biochim. Biophys. Acta 1106: 335–343.

    Article  Google Scholar 

  • Klemm, W. R., and Yurttas, L. 1992 The dehydration theory of alcohol intoxication, in: “Treatment of Drug and Alcohol Abuse,” R. R. Watson, ed., Humana Press, Clifton, NJ. pp 1–15.

    Google Scholar 

  • LoGrasso, P. V., F. Moll, and T. A. Cross. (1988,) Solvent history dependence of gramicidin a conformations in hydrated lipid bilayers. Biophysical J. 54: 259–267.

    Google Scholar 

  • LoGrasso, P. V., F. Moll, and T. A. Cross. 1988, Solvent history dependence of gramicidin a conformations in hydrated lipid bilayers. Biophysical J. 54: 259–267.

    Article  ADS  Google Scholar 

  • Lopes, C. M. B., and Louro, S. R. W. 1991, The effects of n-alkanols on the lipid/protein interface of Ca2+-ATPase of sarcoplasmic reticulum vesicles. Biochim. Biophys. Acta 1070: 467–473.

    Article  Google Scholar 

  • Marques, A., and Guerri, C. 1988, Effects of ethanol on rat brain Na+, K+-ATPase from native and delipidized synaptic membranes. Biochem. Pharm. 37: 601–606.

    Article  Google Scholar 

  • Meyer, H. 1889, Eigenschaft der anathetica bedingt ihre narkitische Wirkung? Arch Exp. Path. Pharmak. (Naunyn-Schmiedebergs) 42: 109–118.

    Article  Google Scholar 

  • Meyer, H. 1901, Der einfluss wechselnder temperatur auf wirkungsstarke und theilungscoefficient der narcotica. Arch Exp. Membr. Path. Pharmak. (Naunyn-Schmiedebergs) 46: 338–346.

    Article  Google Scholar 

  • Miller, K. W. 1985, Nature of the site of general anesthesia. Int. Rev. Neurobiol. 27: 1–61.

    Article  ADS  Google Scholar 

  • Miller, S. L. 1961, A theory of gaseous anesthetics. Proc. Natl. Acad. Sci. 47: 1515–1524.

    Article  ADS  Google Scholar 

  • Morgan, P. G., Sedensky, M. M., and Meneely, P. M. 1991, The genetics of response to volatile anesthetics in C. Elegans. Ann. NY Acad. Sci. 625: 524–531.

    Article  ADS  Google Scholar 

  • Nash, H. A., Campbell, D. B., and Krishnan, K. S. 1991, New Mutants of Drosophila that are resistant to the anesthetic effects of halothane. Ann. NY Acad. Sci. 625: 540–544.

    Article  ADS  Google Scholar 

  • Nie, Y., Stubbs, C. D., Williams, B. W., and Rubin, E. 1989, Ethanol causes decreased partitioning into biological membranes without changes in lipid order. Archives Biochem. Biophys. 268: 349–359.

    Article  Google Scholar 

  • Nishizuka, Y. 1988, Protein kinase C. Nature 334: 661–665.

    Article  ADS  Google Scholar 

  • Overton, E. Studien uber die Narkose (Fischer, Jena, 1901).

    Google Scholar 

  • Pauling, L. 1961, A molecular theory of general anesthesia. Science 134: 15–21.

    Article  ADS  Google Scholar 

  • Rand, R. P., and Parsegian, V. A. 1989, Hydration forces between phospholipid bilayers. Biochim. Biophys. Acta 988: 351–375.

    Google Scholar 

  • Richards, C. D., Martin, K., Gregory, S., Keightley, C. A., Hesketh, T. R., Smith, G. Warren, G. B., and Metcalfe, J. C. 1978, Degenerate perturbations of protein structure as the mechanism of anesthetic action. Nature 276: 775–119.

    Article  ADS  Google Scholar 

  • Rottenberg, H., Waring, A., and Rubin, E. 1981, Tolerance and cross tolerance in chronic alcoholics: reduced membrane binding of ethanol and other drugs. Science 213: 583–585.

    Article  ADS  Google Scholar 

  • Rubin, E., Miller, K. W., and Roth, S. H. (eds) Molecular and Cellular Mechanisms of Alcohol and Anesthetics. Ann. NY Acad. Sci. vol 625, (1991).

    Google Scholar 

  • Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.

    Google Scholar 

  • Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.

    Google Scholar 

  • Seeman, P. 1972, The membrane actions of anesthetics and tranquilizers. Pharamocol. Reviews 24: 583–655.

    Google Scholar 

  • Stubbs, C. D. 1989, Physico-chemical responses of cell membranes to dietary manipulation. Colloque Inserm 195: 125–134.

    Google Scholar 

  • Stubbs, C. D. 1983, Membrane fluidity. Structure and dynamics in membrane lipids. Essays in Biochemistry 19: 1–39.

    Google Scholar 

  • Stubbs, C. D., and Williams, B. W. (1992) Fluorescence in membranes, in: “Fluorescence Spectroscopy in Biochemistry” (vol III), J. R. Lakowicz, ed., Plenum NY, pp 231–263.

    Google Scholar 

  • Stubbs, C. D., Kisielewski, A., and Rubin, E. 1991, Chronic ethanol ingestion modifies liver microsomal phosphatidylserine inducing resistance to hydrolysis by exogeneous phospholipase A2. Biochim. Biophys. Acta 1070: 349–354.

    Article  Google Scholar 

  • Stubbs, C. D., Williams, B. W., and Ho, C 1990, Fluorophore lifetime distributions as a probe of lipid bilayer organization. Time-Resolved Laser Spectroscopy in Biochemistry II. (Lakowicz, J. R. ed.) Proc. SPIE 1204: 448–455.

    Google Scholar 

  • Stubbs, C. D., Williams, B. W., Pryor, C. L., and Rubin, E. 1988, Ethanol induced modifications to membrane lipid structure: Effect on phospholipase A2 — membrane interactions. Archives Biochem. Biophys. 262: 560–573.

    Article  Google Scholar 

  • Sun, G. Y., and Sun. A. Y. 1985, Ethanol and membrane lipids. Alcohol Clin. Exp. Res. 9: 164–180.

    Article  Google Scholar 

  • Swann, A. C. 1984, Chronic ethanol and Na-K ATP’ase. J. Pharm. Exp. Ther. 232: 475–479.

    Google Scholar 

  • Taraschi, T. F., and Rubin, E. 1985, Effect of ethanol on the chemical and stuctural properties of membranes. Lab. Invest. 52: 120–131.

    Google Scholar 

  • Taraschi, T. F., Ellingson, J. S., Wu, A., Zimmerman, R., and Rubin, E. 1986,. Phosphatidylinositol from ethanol-fed rats confers membrane tolerance to ethanol. Proc. Natl. Acad. Science (USA) 83: 9398–9402.

    Google Scholar 

  • Tas, P. W. L., Kress, H. G., and Koschel, K. 1987, General anesthetics can competitively interfere with sensitive membrane proteins. Proc. Natl. Acad. Sci. USA 84: 5972–5975.

    Article  ADS  Google Scholar 

  • Tas, P. W. L., Kress, H. G., and Koschel, K. 1990, Lipid solubility is not the sole criterion for the inhibition of a Ca2+ activated K+ channel by alcohols. Biochim. Biophys. Acta 1023: 436–440.

    Article  Google Scholar 

  • Ueda, I. (1991) Interfacial effects of anesthetics on membrane fluidity, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 91–131.

    Google Scholar 

  • Ueda, I., and Kameya, H. 1973, Kinetic and thermodynamic aspects of the mechanism of general anesthesia in a model system of firefly luminescence in vitro. Anesthesiology 38: 425–436.

    Article  Google Scholar 

  • Urry, D. W., and Sandorfy, C. (1991) Chemical Modification of transmembrane protein structure and function, in: “Membrane Fluidity” (vol 5) R. C. Aloia, C. C. Curtain, and L. M. Gordon, eds., Wiley, NY., pp 91–131.

    Google Scholar 

  • Wang, D., Taraschi, T. F., Rubin, E., and Janes, N. 1993, Configurational entropy is the driving force of ethanol action in membrane architecture. Biochim. Biophys. Acta 1145: 141–148.

    Article  Google Scholar 

  • Williams, B. W., and Stubbs, C. D. 1988, Properties influencing fluorescence lifetime distributions in membranes. Biochemistry 27: 7994–7999.

    Article  Google Scholar 

  • Williams, B. W., Scotto, A. W., and Stubbs, C. D. 1990, The effect of proteins on fluorophore lifetime heterogeneity in lipid bilayers. Biochemistry 29: 3248–3255.

    Article  Google Scholar 

  • Wood, S. C., Forman, S. A., and Miller, K. W. 1991, Short chain and long chain alkanols have different sites of action on nicotinic acetylcholine receptor channels from Torpedo. Mol. Pharmacol. 39: 332–338.

    Google Scholar 

  • Wood, W. G., and Schroeder, F. 1988, Membrane Effects of ethanol: Bulk lipid versus lipid domains. Life Science 43: 467–475.

    Article  Google Scholar 

  • Zannoni, C., Arcioni, A., and Cavatorta, P. 1983, Fluorescence depolarization in liquid crystals and membrane bilayers. Chem. Phys. Lipids 32: 179–250.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Plenum Press, New York

About this chapter

Cite this chapter

Gańcza, W.M., Paszkiewicz, T. (1993). Phonon Patterns of Cubic Crystal Monte Carlo Simulation Program. In: Paszkiewicz, T., Rapcewicz, K. (eds) Die Kunst of Phonons. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2455-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2455-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44677-1

  • Online ISBN: 978-1-4615-2455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics