Advertisement

Phonon Imaging at Ultrasonic Frequencies: The Dynamic Response on Anisotropic Solids

  • A. G. Every
  • K. Y. Kim
  • W. Sachse
Chapter

Abstract

Recently there have been a number of ultrasonics experiments performed that elicit detailed information on the elastodynamic response of anisotropic solids to transient point-like forces. In this lecture I will be describing methods for computing the dynamic Green’s functions of anisotropic solids, and showing how these response functions are able to account for the observations. In these experiments small-aperture transducers or acoustic lenses are used to achieve wide-angle radiation and detection sensitivity as well as high spatial resolution. Many salient aspects of thermal phonon imaging, such as phonon focusing, polarization selectivity and mode conversion at surfaces also feature in these ultrasonic experiments, but there are neverthless significant differences. Unlike thermal phonons, the ultrasonic waves are coherent, and because their characteristic wavelengths are several orders of magnitude larger than those of phonons, the far field condition is not as well satisfied, and diffraction effects feature prominently. Various modes of excitation and detection exist, both broadband and monochromatic, some of which tend to disguise these diffraction effects, while others reveal them clearly.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki, K. and P. Richards, 1980, Quantitative Seismology (Freeman, San Francisco).Google Scholar
  2. Aussei, J.D. and J.P. Monchalin, 1989, Ultrasonics 27, 165.CrossRefGoogle Scholar
  3. Berry, M.V., 1976, Adv. Phys. 25, 1.ADSCrossRefGoogle Scholar
  4. Buchwald, V.T., 1959, Proc. R. Soc. Lond. A253, 563.MathSciNetADSGoogle Scholar
  5. Burridge, R., 1967, Quart. J. Mech. Appl. Math. XX, 42.MathSciNetGoogle Scholar
  6. Cameron, N. and G. Eason, 1967, Quart J. Mech. Appl. Math. XX, 23.CrossRefGoogle Scholar
  7. Ceranoglu, A.N. and Y.H. Pao, 1981, J. Appl. Mech. 48, 125; 48, 133; 48, 139.ADSzbMATHCrossRefGoogle Scholar
  8. Castagnede, B., J.T. Jenkins, W. Sachse and S. Baste, 1990, J. Appl. Phys. 67, 2753.ADSCrossRefGoogle Scholar
  9. Castagnede, B. and Y. Berthelot, 1992, J. Acoustique 5, 417.Google Scholar
  10. Cottam, M.G. and A.A. Maradudin, 1984, Surface Linear Response Functions, in: Surface Excitations, ed. V.M. Agranovich and R. Loudin (Elsevier, Amsterdam).Google Scholar
  11. Duff, G.F.D., 1960, Phil. Trans. Roy. Soc. 252, 249.MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. Every, A.G. and W. Sachse, 1990, Phys. Rev. B42, 8196.ADSCrossRefGoogle Scholar
  13. Every, A.G. and W. Sachse, 1991, Phys. Rev. B44, 6689.ADSCrossRefGoogle Scholar
  14. Hauser, M.R., R.L. Weaver and J.P. Wolfe, 1992, Phys. Rev. Lett. 68, 2604.ADSCrossRefGoogle Scholar
  15. Hutchings, D.A., 1988, Ultrasonic Generation by Pulsed Lasers, in: Physical Acoustics, Vol XVIII, ed. W.P. Mason and R.N. Thurston (Academic, Boston).Google Scholar
  16. Kim, K.Y., L. Niu, B. Castagnede and W. Sachse, 1989, Rev. Sci. Instrum. 60, 2785.ADSCrossRefGoogle Scholar
  17. Kim, K.Y., A.G. Every and W. Sachse, 1993a, to be published.Google Scholar
  18. Kim, K.Y., A.G. Every and W. Sachse, 1993b, to be published.Google Scholar
  19. Kim, K.Y., A.G. Every and W. Sachse, 1993c, to be published.Google Scholar
  20. Kolomenskii, A.A. and A.A. Maznev, 1991, JETP Lett. 53, 423.ADSGoogle Scholar
  21. Maris, H.J., 1983, Phys. Rev. B28, 7033.ADSCrossRefGoogle Scholar
  22. Novikov, V.V. and L. Chernozatonskii, 1988, Sov. Phys. Acoust. 34, 215.Google Scholar
  23. Payton, R.G., 1983, Elastic Wave Propagation in Transversely Isotropie Media (Martinus Nijhoff, The Hague).CrossRefGoogle Scholar
  24. Sachse, W., A.G. Every and M.O. Thompson, 1990, Am. Soc. Mech. Eng. AMD-Vol. 116, 51.Google Scholar
  25. Scruby, C.B., R.J. Dewhurst, D.A. Hutchings and S.B. Palmer, 1982, Laser Generation of Ultrasound in Metals, in: Research Techniques in Nondestructive Testing, Vol. V, ed. R.S. Sharpe (Academic, New York).Google Scholar
  26. Tewary, V.K. and CM. Fortunko, 1992, J. Acoust. Soc. Am. 91, 1888.ADSCrossRefGoogle Scholar
  27. Tverdokhlebov, A. and J. Rose, 1988, J. Acoust. Soc. Am. 83, 118.ADSCrossRefGoogle Scholar
  28. van der Hijden, 1987, Propagation of Transient Elastic Waves in Stratified Anisotropic Media (North Holland, Amsterdam).Google Scholar
  29. van der Hijden, 1987, Propagation of Transient Elastic Waves in Stratified Anisotropic Media (North Holland, Amsterdam).zbMATHGoogle Scholar
  30. Wesner, J., K.U. Wurz, K. Hillmann and W. Grill, 1992, Imaging of Coherent Phonons, in: 7th Int. Conf. on Phonon Scattering in Condensed Matter.Google Scholar
  31. Yeatts, F.R., 1984, Phys. Rev. B29, 1674.MathSciNetADSGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • A. G. Every
    • 1
  • K. Y. Kim
    • 2
  • W. Sachse
    • 2
  1. 1.Physics DepartmentUniversity of the WitwatersrandSouth Africa
  2. 2.Department of Theoretical and Applied MechanicsCornell UniversityIthacaUSA

Personalised recommendations