Advertisement

The Surface Impedance and the Slab Conduchvity of Metals Beyond the Relaxation Time Approximation

  • Jerzy Czerwonko
  • Moisei I. Kaganov
  • Grigorii Ya Lyubarskii
Chapter

Abstract

Kinetic theory of the skin effect for the electrons obeying an isotropic dispersion law has been developed by Reuter and Sondheimer.1 They applied the so-called τ-approximation (or relaxation time approximation), taking into account only the loss term in the electron scattering integral, -f 1/τ. Here f 1 denotes the deviation of the phase-space electron distribution function from its local equilibrium value.* The electron gas is assumed to be a degenerate one, the derivative of the Fermi function -∂f 8/∂&#x025B = δ(&#x025B-&#x025B F ).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Reuter and E.H. Sondheimer. Proc. Roy. Soc. 195: 336 (1948).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    I.M. Lifshitz, M.Ya. Azbel, and M. I. Kaganov, “Electron Theory of Metals,” Consultants Bureau, New York (1973).Google Scholar
  3. 3.
    A.A. Abrikosov, “Fundamentals of the Theory of Metals,” North-Holland, Amsterdam (1988).Google Scholar
  4. 4.
    L.A. Falkovsky, Adv. Phys. 32: 753 (1983).ADSCrossRefGoogle Scholar
  5. 5.
    R.B. Dingle, Appl. Sci. Res. B 9: 69 (1953).MathSciNetGoogle Scholar
  6. 6.
    A. Manz, J. Black, Kh. Pashaev, and D.L. Mills, Phys. Rev. B 17: 1721 (1978).ADSGoogle Scholar
  7. 7.
    A. Manz, J. Black and D.L. Mills, Phys. Rev. B 20: 4018 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    J. Black and D.L. Mills, Phys. Rev. B 21: 5860 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    A.P. Zhernov and Kh. P. Pashaev, Fiz. Tverd. Tela 25: 3389 (1983).Google Scholar
  10. 10.
    K. Fuchs, Proc. Comb. Philos. Soc. 34: 100 (1938).ADSCrossRefGoogle Scholar
  11. 11.
    J. Czerwonko, Z. Phys. B 80: 225 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    J. Czerwonko, Physica A 174: 438 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    P.M. Morse and H. Feshbach, “Methods of Theoretical Physics,” McGraw-Hill, New York(1953).Google Scholar
  14. 14.
    M.I. Kaganov, G.Ya. Lyubarskii, and J. Czerwonko, Zh. Eksp. Teor. Fiz. 102: 1563 (1992).Google Scholar
  15. 15.
    M.I. Kaganov, G.Ya. Lyubarskii, and J. Czerwonko, Zh. Eksp. Teor. Fiz. 102: 1351 (1992).Google Scholar
  16. 16.
    A.F. Andreev, Uspekhi Fiz. Nauk 105: 113 (1971).Google Scholar
  17. 17.
    M.S. Khaikin, Adv. Phys. 18: 1 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    R.E. Prange and T.W. Nee, Phys. Rev. 168: 779 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    D. Pines and Ph. Nozières, “Theory of Quantum Liquids,” Benjamin, New York (1966).Google Scholar
  20. 20.
    J. Czerwonko and M.I. Kaganov, Phys. Lett A 152: 430 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    V.I. Okulov and V.V. Ustinov, Fiz. Nizk. Temp. 5: 213 (1979).Google Scholar
  22. 22.
    M.Ya. Azbel, S.D. Pavlov, I.A. Gamalya, and A.I. Vereshchagin, Pis’ma Zh. Eksp. Teor. Fiz. 16: 295 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Jerzy Czerwonko
    • 1
  • Moisei I. Kaganov
    • 2
  • Grigorii Ya Lyubarskii
    • 3
  1. 1.Institute of PhysicsTechnical University of WroclawWroclawPoland
  2. 2.P. L. Kapitza Institute for Physical ProblemsMoscowRussia
  3. 3.Ukrainian Physico-Technical InstituteKharkovUkraine

Personalised recommendations