Dynamics Close to the Glass Transition

  • Łukasz A. Turski


In spite of enormous efforts, the theoretical understanding of the phenomenon referred to as a glass transition is still fragmentary. Laboratory and computer experiments on supercooled liquid and glass properties close to the transition temperature (T g) show how important a role is played, in these materials, by local geometrical arrangements of constituent particles. In this lecture I shall outline a particular theory of glass transition phenomena focusing on a new dynamical concept — the rheological stress — used to account for several important non-equilibrium properties of a glass and its parent supercooled liquid close to the glass transition T g.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Logan, How Much Do You Know About Glass?, Dodd, New York 1951Google Scholar
  2. [2]
    J. Kramer, Ann.Phys. (Paris) 19, 37 (1934)ADSGoogle Scholar
  3. [3]
    W. Buckel, R. Hilsch, Z. Phys. 138, 109 (1954)ADSCrossRefGoogle Scholar
  4. [4]
    W. I. Johnson, Y. T. Cheng, and M. Van Rossum, and M. A. Nicolet, Nucl. Instrument Methods 7/8, 657 (1986)CrossRefGoogle Scholar
  5. [5]
    A. Pabst, Am. Mineral, 37, 137 (1952)Google Scholar
  6. [6]
    R. B. Schwarz, C. C. Kok, Appl. Phys. Lett. (1988)Google Scholar
  7. [7]
    J. Jäckie, Prog. Theor. Phys. 49, 171 (1986)Google Scholar
  8. [8]
    K. Binder and A. P. Young, Rev. Mod. Phys. 58, (1986)Google Scholar
  9. [9]
    G. Tammann, Der Glasszustand. L. Voss, Leipzig (1933); J. Frenkel, Kinetic Theory of Liquids, Dover, New York (1955); J. D. Bernal, in Structure and Properties of Liquids (Edited by T. J. Hughel). Elsevier, London (1965)Google Scholar
  10. [10]
    L. Bosio and C. G. Windsor, Phys. Rev. Lett. 35, 1652 (1975)ADSCrossRefGoogle Scholar
  11. [11]
    A. Rahman, M. J. Mandell, and J. P. McTauge, J. Chem. Phys. 64, 1564 (1976)ADSCrossRefGoogle Scholar
  12. [12]
    H. Vogel, Z. Phys. 22, 645 (1921)Google Scholar
  13. [13]
    A. Sjölander and L. A. Turski, J.Phys. C11, 1973 (1978)ADSGoogle Scholar
  14. [14]
    K.H. Fisher and J.A. Hertz, Spin Glasses, Cambridge University Press, Cambridge, 1990Google Scholar
  15. [15]
    D. Elderfield and D. Sherrington, J. Phys. C 16, L497, L971, L1169 (1983)Google Scholar
  16. [16]
    D.J. Gross, I. Kanter and H. Sompolinsky, Phys. Rev. Lett. 55, 304 (1985)ADSCrossRefGoogle Scholar
  17. [17]
    R. Kree, L.A. Turski and A. Zippelius, Phys. Rev. Lett. 58, 1656 (1987)ADSCrossRefGoogle Scholar
  18. [18]
    D. Thirumalai and T.R. Kirkpatrick, Phys. Rev. B37, 5342 (1988)CrossRefGoogle Scholar
  19. [19]
    T.R. Kirkpatrick and P.G. Wolynes, Phys. Rev. B36, 8552 (1987)ADSCrossRefGoogle Scholar
  20. [20]
    R.D. Mountain and D. Thirumalai, Jour. Chem. Phys. 93, 6975 (1989)CrossRefGoogle Scholar
  21. [21]
    D. Thirumalai, R.D. Mountain and T.R. Kirkpatrick, Phys. Rev. A39, 3536 (1989) J. of. Chem. Phys. 93, 6975 (1989)Google Scholar
  22. [22]
    R.D. Mountain and D. Thirumalai, Int. Jour. of Mod. Phys. C1, 77 (1990)ADSCrossRefGoogle Scholar
  23. [22]
    R.D. Mountain and D. Thirumalai, Int. Jour. of Mod. Phys. C1, 77 (1990)ADSCrossRefGoogle Scholar
  24. [24]
    T.V. Ramakrishnan and M. Yussouff, Phys. Rev. B19, 2775 (1979)ADSCrossRefGoogle Scholar
  25. A.D.J. Haymet, Ann. Rep. Phys. Chem. 38, 89 (1987)ADSCrossRefGoogle Scholar
  26. [25]
    D.W. Oxtoby, in Liquids, Freezing and Glass Transition Les Houches 1989, edited by J.P. Hansen, D. Levesque et. J. Zinn-Justin, North Holland, Amsterdam (1991)Google Scholar
  27. [26]
    E. Leutheusser, Phys. Rev. A29, 2765 (1984)ADSCrossRefGoogle Scholar
  28. U. Bengtzelius, W. Götze and A. Sjölander, J. Phys. C17, 5915 (1984)ADSGoogle Scholar
  29. for recent updates, see W. Götze in Proceedings of Discussion Meeting on Relaxation in Complex Systems, Crete 1990, Jour. Non-Crystalline Solids 131–133, (1992)Google Scholar
  30. [27]
    G.F. Mazenko, in Proceedings of Discussion Meeting on Relaxation in Complex Systems, Crete 1990, Jour. Non-Crystalline Solids 131–133, (1992)Google Scholar
  31. [28]
    S. Hess, Physica (Amsterdam) 127 A, 509 (1984)Google Scholar
  32. C.A. Angell, J.H.R. Clarke and L.V. Woodcock, Adv. Chem. Phys. 48, 398 (1981)Google Scholar
  33. R.D. Mountain and P.K. Basu, Phys. Rev. A28, 370 (1983)ADSCrossRefGoogle Scholar
  34. [29]
    M. Kimura and F. Yonezawa, J. of Non-Crystalline Solids 61–62, 535 (1984)CrossRefGoogle Scholar
  35. S. Nose and F. Yonezawa, J. Chem. Phys. 84, 1803 (1986)ADSCrossRefGoogle Scholar
  36. D.K. Remier and A.D.J. Haymet, Phys. Rev. B35, 245 (1987)ADSCrossRefGoogle Scholar
  37. H. Jonsson and H.C. Andersen, Phys. Rev. Lett. 60, 2295 (1988)ADSCrossRefGoogle Scholar
  38. [30]
    P.J. Steinhard, D.R. Nelson and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981)ADSCrossRefGoogle Scholar
  39. [31]
    S. Hess, Z. Naturforsch. 35a, 69 (1979)ADSGoogle Scholar
  40. [32]
    A.S. Mitus and A.Z. Patashinski, Zh. Eksp. Teor. Fiz. 80, 1554 (1981) (Soviet Phys. JETP 53(4), 798 (1981))Google Scholar
  41. A.D.J. Haymet, Phys. Rev. B27, 1725 (1983)ADSCrossRefGoogle Scholar
  42. [33]
    P.A. Egelstaff, An Introduction to the Liquid State, Academic Press, London (1967)Google Scholar
  43. [34]
    H.R. Schober and B.B. Laird, Phys. Rev. Lett. 66, 636 (1991)ADSCrossRefGoogle Scholar
  44. H.R. Schober and B.B. Laird, Phys. Rev. B 44, 6746 (1991)Google Scholar
  45. [35]
    S. Dattagupta and L.A. Turski, Phys. Rev. Lett. 54, 2359 (1985); referred to in the text as IGoogle Scholar
  46. [36]
    S. Dattagupta and L.A. Turski, Phys. Rev. E (1993) in pressGoogle Scholar
  47. [37]
    J.P. Boon and S. Yip, Molecular Hydrodynamics, McGraw Hill, New York, (1980)Google Scholar
  48. [38]
    L.A. Turski, Acta Phys. Pol. A75, 111 (1989)Google Scholar
  49. L.A. Turski, Physica Scripta T13, 259 (1986)CrossRefGoogle Scholar
  50. [39]
    T.R. Kirkpatrick and D. Thirumalai, J. Phys. A 22, L149 (1989)Google Scholar
  51. [40]
    See for instance, L. Gunther, D.J. Bergmann and Y. Imry, Phys. Rev. Lett. 27, 558 (1971)Google Scholar
  52. [41]
    L.D. Landau and E.M. Lifshitz, Theory of Elasticity, Pergamon Press, Oxford, (1959)Google Scholar
  53. [42]
    J.-P. Hansen and I. Mac Donald, The Liquid State Google Scholar
  54. [43]
    Spin Glass Theory and Beyond, edited by M. Mezard, G. Parisi and M.A. Virasaro, World Scientific, Singapore (1987)Google Scholar
  55. [44]
    K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 2, edited by C. Domb and M.S. Green, Academic Press, New York, (1972)Google Scholar
  56. [45]
    M. Zaluska-Kotur and L.A. Turski, J. of Phys. A22, (Math. Gen), 413 (1989)Google Scholar
  57. [46]
    S.K. Ma, Modern Theory of Critical Phenomena, (W.A. Benjamin, Reading, 1976)Google Scholar
  58. [47]
    S. Dattagupta, Relaxation Phenomena in Condensed Matter Physics, (Academic Press, New York 1987)Google Scholar
  59. [48]
    S. Dattagupta, V. Heine, S. Marais, and E. Salje, J. Phys. Cond. Matt 3, 2975 (1991)ADSCrossRefGoogle Scholar
  60. [49]
    L.D. Landau and E.M. Lifshitz, Sov. Phys. JETP 32, 618 (1957)Google Scholar
  61. [50]
    A.G. Frederickson, Principles and Applications of Rheology, Prent ice-Hall, Englewood Cliffs, NJ (1964)Google Scholar
  62. [51]
    V.L. Gurevich and A. Thellung, Phys. Rev. B42, 7345 (1990)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Łukasz A. Turski
    • 1
  1. 1.Polish Academy of SciencesCenter for Theoretical PhysicsWarszawaPoland

Personalised recommendations