Advertisement

Fullerenes

  • Kosmas Prassides
Chapter

Abstract

Recent structural and dynamical studies of C60 and C70 fullerenes and their derivatives in the solid state are reviewed. Orientational ordering of the fullerene molecules is accompanied by drastic changes in the rotational dynamics and structural phase transitions. Solid C60 undergoes a first-order phase transition at 260 K from a face-centred to a simple cubic structure. The isotropic molecular reorientations change abruptly to quasi-random jump motion between nearly-degenerate orientations differing in energy by 11.4(3) meV. A transition to an orientational glass state occurs at 85 K. Static disorder dominates the crystal chemistry of C70. The orientational ordering transitions from the high temperature face-centred cubic structure to the low temperature rhombohedral and monoclinic phases are accompanied by severe hysteresis effects. The rotational dynamic behaviour changes progressively on cooling from isotropic to anisotropic to uniaxial reorientations about the unique molecular axis. High pressure diffraction experiments reveal that C70 has a smaller compressibility than C60. Disorder effects are also present well in the superconducting state for the potassium fulleride K3C60 The C603- units perform small-amplitude librational motions up to 650 K. Measurements of the phonon spectra of K3C60 reveal substantial broadening of fivefold degenerate Hg intramolecular vibrational modes both in the low-energy radial and the high-energy tangential part of the spectrum. This provides evidence for a traditional phonon-mediated mechanism of superconductivity in the fullerides but with an electron-phonon coupling strength distributed over a wide range of energies (33–195 meV) as a result of the finite curvature of the fullerene spherical cage..

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley, Nature 318: 162 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    W. Krätschmer, L.D. Lamb, K. Fostiropoulos, and D.R. Huffman, Nature 347: 354 (1990).ADSCrossRefGoogle Scholar
  3. 3.
    H.W. Kroto, Angew. Chem. 31: 111 (1992).CrossRefGoogle Scholar
  4. 4.
    K. Prassides and H.W. Kroto, Physics World 5: 44 (1992).Google Scholar
  5. 5.
    P.R. Birkett, P.B. Hitchcock, H.W. Kroto, R. Taylor, and D.R.M. Walton, Nature 357: 479 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    C.C. Henderson and P.A. Canili, Science 259: 1885 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    J.D. Crane, P.B. Hitchcock, H.W. Kroto, and D.R.M. Walton, J. Chem. Soc. Chem. Commun. 1764 (1992).Google Scholar
  8. 8.
    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T.M. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 318: 600 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    K. Holczer, O. Klein, S.-M. Huang, R.B. Kaner, K.-J. Fu, R.L. Whetten, and F. Diederich, Science 252: 1154 (1991).ADSGoogle Scholar
  10. 10.
    M.J. Rosseinsky, D.W. Murphy, R.M. Fleming, R. Tycko, A.P. Ramirez, T. Siegrist, G. Dabbagh, and S.E. Barrett, Nature 356: 6368 (1992).CrossRefGoogle Scholar
  11. 11.
    G.L. Squires. “Introduction to the Theory of Thermal Neutron Scattering,” Cambridge University Press, Cambridge (1978).Google Scholar
  12. 12.
    E. Roduner. “The Positive Muon as a Probe in Free Radical Chemistry,” Lecture Notes in Chemistry, Vol. 49, Springer, Heidelberg (1988).Google Scholar
  13. 13.
    E. Roduner, Hyperfine Interactions 65: 857 (1990).ADSCrossRefGoogle Scholar
  14. 14.
    R.M. Fleming, et al., in: “Fullerenes: Synthesis, Properties, and Chemistry of Large Carbon Clusters”, G.S. Hammond and V.J. Kuck, eds., ACS Sympos. Series 481:25 (1991).Google Scholar
  15. 15.
    W.I.F. David, R.M. Ibberson, T.J.S. Dennis, J.P. Hare, and K. Prassides, Europhys. Lett. 18: 219 (1992); 735 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    P.A. Heiney, J.E. Fischer, A.R. McGhie, W.J. Romanow, A.M. Denenstein, J.P. McCauley, A.B. Smith, and D.E. Cox, Phys. Rev. Lett. 66: 2911 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    P.C. Chow, X. Jiang, G. Reiter, P. Wochner, S.C. Moss, J.D. Axe, J.C. Hanson, R.K. McMullan, R.L Meng, and C.W. Chu, Phys. Rev. Lett. 69: 2943 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    R.D. Johnson, C.S. Yannoni, H.C. Dorn, J.R. Salem, and D.S. Bethune, Science 255: 1235 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    J.R.D. Copley, D.A. Neumann, R.L. Cappelletti, and W.A. Kamitakahara, J. Phys. Chem. Solids 53: 1353 (1992).Google Scholar
  20. 20.
    W.I.F. David, R.M. Ibberson, J.C. Matthewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, and D.R.M. Walton, Nature 353: 147 (1991).ADSCrossRefGoogle Scholar
  21. 21.
    K. Prassides, H.W. Kroto, R. Taylor, D.R.M. Walton, W.I.F. David, J. Tomkinson, M.J. Rosseinsky, D.W. Murphy, and R.C. Haddon, Carbon 30: 1277 (1992).CrossRefGoogle Scholar
  22. 22.
    K. Rapcewicz and J. Przystawa, contribution in this volume.Google Scholar
  23. 23.
    K. Prassides, Int. J. Mod. Phys. B 6: 4007 (1992).ADSCrossRefGoogle Scholar
  24. 24.
    K. Prassides et al., unpublished results.Google Scholar
  25. 25.
    R. Blinc, J. Seliger, J. Dolinsek, and D. Arcon, Europhys. Lett. in press.Google Scholar
  26. 26.
    R.C. Yu, N. Tea, M.B. Salamon, D. Lorents, and R. Malhotra, Phys. Rev. Lett. 68: 2050 (1992).ADSCrossRefGoogle Scholar
  27. 27.
    F. Gugenberger, R. Heid, C. Meingast, P. Adelmann, M. Braun, H. Wühl, M. Haluska, and H. Kuzmany, Phys. Rev. Lett. 69: 3774 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    T. Matsuo, H. Suga, W.I.F. David, R.M. Ibberson, P. Bernier, A. Zahab, C. Fabre, A. Rassat, and A. Dworkin, Solid State Commun. 83: 711 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    G.B.M. Vaughan, P.A. Heiney, J.E. Fischer, D.E. Luzzi, D.A. Ricketts-Foot, A.R. McGhie, Y.-W. Hui, A.L. Smith, D.E. Cox, W.J. Romanow, B.H. Allen, N. Coustel, J.P. McCauley, and A.B. Smith, Science 254: 1350 (1991).ADSCrossRefGoogle Scholar
  30. 29.
    G.B.M. Vaughan, P.A. Heiney, J.E. Fischer, D.E. Luzzi, D.A. Ricketts-Foot, A.R. McGhie, Y.-W. Hui, A.L. Smith, D.E. Cox, W.J. Romanow, B.H. Allen, N. Coustel, J.P. McCauley, and A.B. Smith, Science 254: 1350 (1991).ADSCrossRefGoogle Scholar
  31. 31.
    G.B.M. Vaughan, P.A. Heiney, D.E. Cox, J.E. Fischer, A.R. McGhie, A.L. Smith, R.M. Strongin, M.A. Cichy, and A.B. Smith, to be published.Google Scholar
  32. 32.
    K. Prassides, T.J.S. Dennis, C. Christides, E. Roduner, H.W. Kroto, R. Taylor, and D.R.M. Walton, J. Phys. Chem. 26: 10600 (1992).CrossRefGoogle Scholar
  33. 33.
    T.J.S. Dennis, K. Prassides, E. Roduner, L. Cristofolini, and R. DeRenzi, J. Phys. Chem. to be published.Google Scholar
  34. 34.
    C. Christides, T.J.S. Dennis, K. Prassides, R.L. Cappelletti, D.A. Neumann, and J.R.D. Copley, to be published.Google Scholar
  35. 35.
    B. Renker, F. Gompf, R. Heid, P. Adelmann, A. Heiming, W. Reichardt, G. Roth, H. Schober, and H. Rietschel, Z. Phys. B 90: 325 (1993).ADSCrossRefGoogle Scholar
  36. 36.
    E.J. Ansaldo, C. Niedermayer, and C.E. Stronach, Nature 353: 129 (1991).CrossRefGoogle Scholar
  37. 37.
    D.W. Murphy et al., J. Phys. Chem. Solids 53: 1321 (1992).ADSCrossRefGoogle Scholar
  38. 38.
    K. Holczer and R.L. Whetten, Carbon 30: 1261 (1992).CrossRefGoogle Scholar
  39. 39.
    J.H. Weaver, J. Phys. Chem. Solids 53: 1433 (1992).ADSCrossRefGoogle Scholar
  40. 40.
    O. Zhou and D.E. Cox, J. Phys. Chem. Solids 53: 1373 (1992).ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Fischer, P.A. Heiney, and A.B. Smith, Acc. Chem. Res. 25: 112 (1992).CrossRefGoogle Scholar
  42. 42.
    M. Schlüter, M. Lannoo, M. Needels, G.A. Baraff, and D. Tománek, J. Phys. Chem. Solids 53: 1473 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    P.W. Stephens, L. Mihaly, P.L. Lee, R.L. Whetten, S.-M. Huang, R. Kaner, F. Diederich, and K. Holczer, Nature 351: 632 (1991).ADSCrossRefGoogle Scholar
  44. 44.
    S. Chakravarty and S. Kivelson, Europhys. Lett. 16:751 (1991); S. Chakravarty, M.P. Gelfand, and S. Kivelson, Science 254: 970 (1991).ADSGoogle Scholar
  45. 45.
    G. Baskatan and E. Tossati, Curr. Sci. 61: 33 (1991).Google Scholar
  46. 46.
    F.C. Zhang, M. Ogata, and T.M. Rice, Phys. Rev. Lett. 67: 3452 (1991).ADSCrossRefGoogle Scholar
  47. 47.
    C.M. Varma, J. Zaanen, and K. Raghavachari, Science 254: 989 (1991).ADSCrossRefGoogle Scholar
  48. 48.
    M. Schlüter, M. Lannoo, M. Needels, G.A. Baraff, and D. Tománek, Phys. Rev. Lett. 68: 526 (1992).ADSCrossRefGoogle Scholar
  49. 49.
    R.A. Jishi and M.S. Dresselhaus, Phys. Rev. B 45: 2597 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    L. Pietronero, Europhys. Lett. 17: 365 (1992).ADSCrossRefGoogle Scholar
  51. 51.
    I.I. Mazin et al., Phys. Rev. B 45: 5114 (1992).ADSCrossRefGoogle Scholar
  52. 52.
    Y. Asai and Y. Kawaguchi, Phys. Rev. B 46: 1265 (1992).ADSCrossRefGoogle Scholar
  53. 53.
    R.M. Fleming, A.P. Ramirez, M.J. Rosseinsky, D.W. Murphy, R.C. Haddon, S.M. Zahurak, and A.V. Makhija, Nature 352: 787 (1991).ADSCrossRefGoogle Scholar
  54. 54.
    O. Zhou et al., Science 255: 833 (1992).ADSCrossRefGoogle Scholar
  55. 55.
    C.-C. Chen and C.M. Lieber, J. Am. Chem. Soc. 114: 3141 (1992).CrossRefGoogle Scholar
  56. 56.
    A.P. Ramirez et al., Phys. Rev. Lett. 68: 1058 (1992).ADSCrossRefGoogle Scholar
  57. 57.
    T.W. Ebbesen, J.S. Tsai, K. Tanigaki, H. Hiura, Y. Shimakawa, Y. Kubo, I. Hirosawa, and J. Mizuki, Physica C 203: 163 (1992).ADSCrossRefGoogle Scholar
  58. 58.
    L. DeGiorgi, et al., Phys. Rev. Lett. 69: 2987 (1992).ADSCrossRefGoogle Scholar
  59. 59.
    R. Tycko et al., Phys. Rev. Lett. 68: 1912 (1992).ADSCrossRefGoogle Scholar
  60. 60.
    R.F. Kiefl et al., to be published.Google Scholar
  61. 61.
    Z. Zhang, C.-C. Chen, S.P. Kelty, H. Dai, and C.M. Lieber, Nature 353: 353 (1991).ADSCrossRefGoogle Scholar
  62. 62.
    K. Prassides, J. Tomkinson, C. Christides, M.J. Rosseinsky, D.W. Murphy, and R.C. Haddon, Nature 354: 462 (1991).ADSCrossRefGoogle Scholar
  63. 63.
    J.W. White, G. Lindseil, L. Pang, A. Palmisano, D.S. Sivia, and J. Tomkinson, Chem. Phys. Lett. 191: 92 (1992).Google Scholar
  64. 64.
    C. Christides, K. Prassides, M.J. Rosseinsky, D.W. Murphy, and R.C. Haddon, to be published.Google Scholar
  65. 65.
    R.L. Cappelletti, J.R.D. Copley, W.A. Kamitakahara, F. Li, J.S. Lannin, and D. Ramage, Phys. Rev. Lett. 66: 3261 (1991).ADSCrossRefGoogle Scholar
  66. 66.
    K. Prassides, T.J.S. Dennis, J.P. Hare, J. Tomkinson, H.W. Kroto, R. Taylor, and D.R.M. Walton, Chem. Phys. Lett. 187: 455 (1991).ADSCrossRefGoogle Scholar
  67. 67.
    C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, D. Schütz, and A. Rassat, J. Phys. Chem. 96: 22 (1992).CrossRefGoogle Scholar
  68. 68.
    K. Prassides, C. Christides, M.J. Rosseinsky, J. Tomkinson, D.W. Murphy, and R.C. Haddon, Europhys. Lett. 19: 629 (1992).ADSCrossRefGoogle Scholar
  69. 69.
    M.G. Mitch, S.J. Chase, and J.S. Lannin, Phys. Rev. Lett. 68: 883 (1992).ADSCrossRefGoogle Scholar
  70. 70.
    P. Zhou, K.A. Wang, A.M. Rao, P.C. Eklund, G. Dresselhaus, and M.S. Dresselhaus, Phys. Rev. B 46: 2595 (1992).ADSCrossRefGoogle Scholar
  71. 71.
    R. Danieli et al., Solid State Commun. 81: 257 (1992).ADSCrossRefGoogle Scholar
  72. 72.
    T. Pichler, M. Matus, J. Kürti, and H. Kuzmany, Phys. Rev. B 13841 (1992).Google Scholar
  73. 73.
    C. Christides, D.A. Neumann, K. Prassides, J.R.D. Copley, J.J. Rush, M.J. Rosseinsky, D.W. Murphy, and R.C. Haddon, Phys. Rev. B 46: 12088 (1992).ADSCrossRefGoogle Scholar
  74. 74.
    I.I. Mazin, O.V. Dolgov, A. Golubov, and S.V. Shulga, Phys. Rev. B 47: 538 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Kosmas Prassides
    • 1
  1. 1.School of Chemistry and Molecular SciencesUniversity of Sussex FalmerBrightonUK

Personalised recommendations