Skip to main content

Phonon Scattering and Heat Transfer in Simple Molecular Crystals

  • Chapter
Die Kunst of Phonons

Abstract

This report is dedicated to the study of high-temperature isochoric thermal conductivity and phonon scattering in solidified inert gases and simple molecular crystals in which the molecules rotate as a whole. The experimental data accumulated over the past 2–3 decades has cast doubt on the correctness of some ideas about the thermal conductivity of solids which had seemed to be established and, in particular, the description of the thermal conductivity of perfect crystals at temperatures above or of the order of the Debye temperature (T ≥ Θ). Quite recently, it was not doubted that high-temperature thermal conductivity is proportional to the inverse temperature law, λ ∝ 1/T. It was based on both the experimental data and assumptions being evident at first sight from which this dependence followed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.A. Slack, Solid State Phys. 34, 1 (1979).

    Article  Google Scholar 

  2. R. Berman, Thermal Conduction in Solids, Clarendon Press, Oxford (1976).

    Google Scholar 

  3. D.G. Canili and R.O. Pohl, Ann. Rev. Phys. 39, 93 (1988).

    Article  ADS  Google Scholar 

  4. M.C. Roufosse and P.G. Klemens, J. Geophys. Res. 79, 703 (1974).

    Article  ADS  Google Scholar 

  5. P.G. Klemens, High Temp.-High Pressures 15, 249 (1983).

    Google Scholar 

  6. A. Auerbach and P.B. Allen, Phys. Rev. B. 29, 2884 (1984).

    Article  ADS  Google Scholar 

  7. G.A. Slack and P. Andersson, Phys. Rev. B. 26, 1883 (1982).

    Article  ADS  Google Scholar 

  8. S. Petterson, J. Phys.: Condens. Matter 1, 361 (1989).

    Article  ADS  Google Scholar 

  9. V.E. Zinoviev and S.I. Masharov, Thermal Properties of Solids, Nauka, Moscow (1973).

    Google Scholar 

  10. V.A. Konstantinov, V.G. Manzhelii, M.A. Strzhemechny and S.A. Smirnov, Sov. J. Low Temp. Phys. 14, 48 (1988).

    Google Scholar 

  11. F. Clayton and D.N. Batchelder, J. Phys. C.: Solid State Phys. 7, 1213 (1973).

    Article  ADS  Google Scholar 

  12. A.I. Bondarenko, V.G. Manzhelii, V.A. Popov, M.A. Strchemechny, and V.G. Gavrilko, Sov. J. Low Temp. Phys. 8, 617 (1982).

    Google Scholar 

  13. A.I. Bondarenko, V.G. Manzhelii, V.A. Popov, M.A. Strzhemechny, and V.G. Gavrilko, Sol. St. Comm. 45 N. 4: 387 (1983).

    Article  ADS  Google Scholar 

  14. I.N. Krupskii and V.G. Manzhelii, Sov. J. Exp. Theor. Phys. 28, 1097 (1969).

    ADS  Google Scholar 

  15. J.M. Ziman, Electrons and Phonons, Clarendon Press, Oxford (1960).

    MATH  Google Scholar 

  16. D.F. Spitzer, J. Phys. Chem. 31, 19 (1970).

    Google Scholar 

  17. V.G. Manzhelii, V.B. Kokshenev, L.A. Koloskova, and I.N. Krupskii, Sov. J. Low Temp. Phys. 1, 624 (1975).

    Google Scholar 

  18. V.A. Konstantinov, V.G. Manzhelii, S.A. Smirnov, and A.M. Tolkachev, Sov. J. Low Temp. Phys. 14, 104 (1988).

    Google Scholar 

  19. J. de Boer, Physica 14, 139 (1948).

    Article  ADS  Google Scholar 

  20. V.A. Konstantinov, V.G. Manzhelii, and S.A. Smirnov, Sov. J. Low Temp. Phys. 14, 412 (1988).

    Google Scholar 

  21. Cryverystals, Ed. by B.I. Verkin and A.F. Prichotko, Naukova Dumka, Kiev (1983).

    Google Scholar 

  22. R.G. Ross, P.A. Andersson, B. Sundqvist, G. Backstrom, Rep. Progr. Phys. 47, 1347 (1984).

    Article  ADS  Google Scholar 

  23. M.I. Bagatskii and V.G. Manzhelii, Ukr. Phys. J. 15, 1088 (1971).

    Google Scholar 

  24. D.F. O’Reilly, E.M. Peterson, and C.E. Schlie, J. Chem. Phys. 60, 1603 (1974).

    Article  ADS  Google Scholar 

  25. M. Djabonrov, C. Levy-Mannhein, J. Leblond, and P. Papon, J. Chem. Phys. 66, 5748 (1977).

    Article  ADS  Google Scholar 

  26. V.A. Konstantinov, V.G. Manzhelii, and S.A. Smirnov, Phys. Stat. Sol. (b) 163, 369 (1991).

    Article  ADS  Google Scholar 

  27. B.M. Mogilevskii and V.T. Surin, Sov. J. Solid St. Phys. 13, 293 (1971).

    Google Scholar 

  28. V.G. Manzhelii and I.N. Krupskii, Sov. J. Solid St. Phys. 10, 284 (1968).

    Google Scholar 

  29. J.H. Colwell, E.K. Gill, and J.A. Morrison, J. Chem. Phys., 42, 3144 (1965).

    Article  ADS  Google Scholar 

  30. A. Anderson and R. Savoie, J. Chem. Phys., 43, 3468 (1965).

    Article  ADS  Google Scholar 

  31. V.G. Manzhelii, A.M. Tolkachev, and E.G. Voitovich, Phys. Stat. Sol. 13, 351 (1966).

    Article  Google Scholar 

  32. V.G. Manzhelii, A.M. Tolkachev, and V.G. Gavrilko, J. Phys. Chem. Solids, 30, 2759 (1969).

    Article  ADS  Google Scholar 

  33. V.A. Konstantinov, V.G. Manzhelii, and S.A. Smirnov, Sov. J. Low Temp. Phys. 17, 462 (1991).

    Google Scholar 

  34. R. Fourme and M. Renaud, C.R. Acad. Sci. Paris 263, 69 (1966).

    Google Scholar 

  35. T. Kawaguchi, K. Tanaka, T. Takenchi, and T. Watanabe, Bull. Chem. Soc. Japan, 46, 62 (1973).

    Article  Google Scholar 

  36. H.S. Gutovsky and D.N. McCall, J. Chem. Phys., 32, 548 (1966).

    Article  ADS  Google Scholar 

  37. E.G. Cox, D.W.S. Cruickshank, Y.A..S. Smith, Proc. Roy. Soc. 247, N.1248:l (1958).

    Google Scholar 

  38. G.E. Bacon, N.A. Curry, S.A. Wilson, Proc. Roy. Soc. 279, N. 1376: 98 (1964).

    Article  ADS  Google Scholar 

  39. E.R. Andrew, R.G. Eades, Proc. Roy. Soc. 218A, 537 (1953).

    Article  ADS  Google Scholar 

  40. A. Eucken, E. Schroder, Anal. Phys. 36, 609 (1939).

    Article  Google Scholar 

  41. R.G. Ross, P.A. Andersson, G. Backstrom, Molec. Phys. 38, N. 2: 377 (1979).

    Article  ADS  Google Scholar 

  42. R.G. Ross, P.A. Andersson, B. Sundquist, G. Backstrom, Rep. Progr. Phys. 47, 1347 (1984).

    Article  ADS  Google Scholar 

  43. V.A. Konstantinov, V.G. Manzhelii, S.A. Smirnov, Ukr. Phys. J. 37, 737 (1992).

    Google Scholar 

  44. A.P. Isakina and A.I. Prokhvatilov, Sov. J. Low. Temp. Phys. 19, N2 (1993).

    Google Scholar 

  45. M.T. Dove, G.S. Pavley, G. Dolling and B.M. Powell, Mol. Phys. 57 N4: 865 (1986).

    Article  ADS  Google Scholar 

  46. H. Kniefte, R. Peney, and M.J. Clouter, J. Chem. Phys. 88, N9: 5846 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Manzhelii, V.G., Konstantinov, V.A. (1994). Phonon Scattering and Heat Transfer in Simple Molecular Crystals. In: Paszkiewicz, T., Rapcewicz, K. (eds) Die Kunst of Phonons. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2455-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2455-7_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44677-1

  • Online ISBN: 978-1-4615-2455-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics