Advertisement

Application of Phonon Physics to Cryogenic Detectors

  • Hans Kraus
Chapter

Abstract

The name ‘Cryogenic Detectors’ is generic for a class of detectors which require low temperatures for their operation.1–6 The operating principle may, for example, involve superconductivity, phonon focussing, or the reduction of the specific heat of materials at very low temperatures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Proceedings of Low Temperature Detectors for Neutrinos and Dark Matter, edited by K. Pretzl, N. Schmitz, and L. Stodolsky, Springer-Verlag Berlin Heidelberg (1987)Google Scholar
  2. [2]
    Low Temperature Detectors for Neutrinos and Dark Matter II, edited by L. Gonzalez-Mestres and D. Perret-Gallix, Editions Frontières (1988)Google Scholar
  3. [3]
    Low Temperature Detectors for Neutrinos and Dark Matter III, edited by L. Brogiato, D. V. Camin, and E. Fiorini, Editions Frontières (1990)Google Scholar
  4. [4]
    Low Temperature Detectors for Neutrinos and Dark Matter IV, edited by N.E. Booth and G.L. Salmon, Editions Frontières (1992)Google Scholar
  5. [5]
    R.L. Mössbauer, J. Phys. G: Nucl. Part. Phys. 17 (1991) S1CrossRefGoogle Scholar
  6. [6]
    E. Fiorini, Physica B169 (1991) 388CrossRefGoogle Scholar
  7. [7]
    H. Kraus et al., Nucl. Instr. Meth. A326 (1993) 172ADSCrossRefGoogle Scholar
  8. [8]
    M. Juda et al., in: EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy III, Oswald H. W. Siegmund, Editor, Proc. SPIE 1743 (1992) 398Google Scholar
  9. [9]
    L. Stodolsky, Comments Nucl. Part. Phys. 18 (1988) 157Google Scholar
  10. [10]
    D.Z. Freedman et al., Ann. Rev. Nucl. Sci. 27 (1977) 167ADSCrossRefGoogle Scholar
  11. [11]
    D.Z. Freedman, Phys. Rev. D 9 (1974) 1389ADSGoogle Scholar
  12. [12]
    G. Zacek et al., Phys. Rev. D34 (1986) 2621ADSGoogle Scholar
  13. [13]
    P. Anselmann et al., Physics Lett. B258 (1992) 376ADSGoogle Scholar
  14. [14]
    B.V. Pritychenko, Nucl. Instr. Meth. A 314 (1992) 390ADSGoogle Scholar
  15. [15]
    L.M. Krauss, “Dark Matter in the Universe”, Scientific American, Dec 1986, p. 50Google Scholar
  16. [16]
    V. Trimble, Ann. Rev. Astron. Astrophys. 25 (1987) 425ADSCrossRefGoogle Scholar
  17. [17]
    A. v. Kienlin et al., in ref. [4] p. 377Google Scholar
  18. [18]
    A. Gabutti et al., Nucl. Instr. Meth. A 289 (1990) 425Google Scholar
  19. [19]
    S.S. Holt, Astro. Lett, and Commun. 26 (1987) 61ADSGoogle Scholar
  20. [20]
    H. Kraus et al., in: EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy III, Oswald H. W. Siegmund, Editor, Proc. SPIE 1743 (1992) 36Google Scholar
  21. [21]
    W.C. Haxton and G.J. Stephenson Jr., Progr. in Part, and Nucl. Phys. 12 (1984) 409ADSCrossRefGoogle Scholar
  22. [22]
    G.F. Dell’Antonio and E. Fiorini, Suppl. Nuovo Cim. 17 (1960) 132CrossRefGoogle Scholar
  23. [23]
    A. Alessandrello et al., Nucl. Instr. Meth. A 314 (1992) 595ADSCrossRefGoogle Scholar
  24. [24]
    W. Schreiber, Diploma Thesis, “Grenzen der Energieauflösung röntgenempfind-licher pn-CCDs”, MPE Report 224, Jan. 1991Google Scholar
  25. [25]
    H. Kraus et al., Europhys. Lett. 1 (1986) 161ADSCrossRefGoogle Scholar
  26. [26]
    D. Twerenbold, Europhys. Lett. 1 (1986) 209ADSCrossRefGoogle Scholar
  27. [27]
    Th. Peterreins et al., Phys. Lett. B 202 (1988) 161ADSCrossRefGoogle Scholar
  28. [28]
    M. Kurakado, Nucl. Instr. Meth. A 314 (1992) 252ADSCrossRefGoogle Scholar
  29. [29]
    N.E. Booth et al., Nucl. Inst. Meth. A 315 (1992) 201ADSCrossRefGoogle Scholar
  30. [30]
    W. Seidel et al., Phys. Lett. B 236 (1990) 483ADSCrossRefGoogle Scholar
  31. [31]
    A. Alessandrello et al., Nucl. Instr. Meth. A 295 (1990) 405ADSCrossRefGoogle Scholar
  32. [32]
    N. Coursol et al., Nucl. Instr. Meth. A 312 (1992) 24ADSCrossRefGoogle Scholar
  33. [33]
    E.E. Haller et al., in: “Neutron Transmutation Doping of Semiconductor Materials” edited by R.D. Larrabee, Plenum Press New York (1984) 21CrossRefGoogle Scholar
  34. [34]
    E.H. Silver et al., Nucl. Inst. Meth. A 277 (1989) 657ADSCrossRefGoogle Scholar
  35. [35]
    D.G. McDonald, Appi. Phys. Lett. 50 (1987) 775ADSCrossRefGoogle Scholar
  36. [36]
    D. McCammon et al., Nucl. Inst. Meth. A 326 (1993) 157ADSCrossRefGoogle Scholar
  37. [37]
    A.K. Drukier and L. Stodolsky, Phys. Rev. 30 (1984) 2295ADSCrossRefGoogle Scholar
  38. [38]
    B.G. Turrell et al., Nucl. Inst. Meth. A 289 (1990) 512ADSCrossRefGoogle Scholar
  39. [39]
    D. Hueber et al., Nucl. Inst. Meth. 167 (1979) 201ADSCrossRefGoogle Scholar
  40. [40]
    W. Seidel et al., Rev. Sci. Instrum. 58 (1987) 1471ADSCrossRefGoogle Scholar
  41. [41]
    F. Probst et al., in ref. [4] p. 193Google Scholar
  42. [42]
    F. Pröbst, “Phonon Mediated Detection of Particles”, to be published in the “Proceedings of the 7th International Conference on Phonon Scattering in Condensed Matter”, Ithaca, Aug 3–7, 1992Google Scholar
  43. [43]
    S. Tamura, Phys. Rev. B31 (1985) 2574ADSGoogle Scholar
  44. [44]
    J.P. Harrison, J. Low Temp. Phys. 37 (1979) 467ADSCrossRefGoogle Scholar
  45. [45]
    G. Bergmann et al., Phys. Rev. B41 (1990) 7386ADSCrossRefGoogle Scholar
  46. [46]
    S.B. Kaplan, J. Low Temp. Phys. 37 (1979) 343ADSCrossRefGoogle Scholar
  47. [47]
    E.T. Swartz and R.O. Pohl in A.C. Anderson and J.P. Wolfe (eds.): Proceedings of “Phonon Scattering in Condensed Matter V”, Springer Series in Solid State Science (1986) 68Google Scholar
  48. [48]
    Th. Peterreins et al., J. Appl. Phys. 69 (4) (1991) 1791ADSCrossRefGoogle Scholar
  49. [49]
    R. Baumgartner et al., Phys. Lett. A 94 (1983) 55ADSGoogle Scholar
  50. [50]
    R.S. Markiewicz, Phys. Rev. B21 (1980) 4674ADSCrossRefGoogle Scholar
  51. [51]
    B. Taylor et al., Phys. Rev. B3 (1971) 1462ADSGoogle Scholar
  52. [52]
    B. Cabrera et al., Nucl. Instr. Meth. A 275 (1989) 97ADSGoogle Scholar
  53. [53]
    D.V. Kazakovtesev and Y.B. Levinson, phys. stat. sol. b 136 1986) 425ADSGoogle Scholar
  54. [54]
    S. Tamura, Phys. Rev. B27 (1983) 858ADSCrossRefGoogle Scholar
  55. [55]
    W.E. Bron et al., Phys. Rev. Lett. 49 (1982) 209ADSCrossRefGoogle Scholar
  56. [56]
    I. Giaever and K. Megerle, Phys. Rev. 122 (1961) 1101ADSCrossRefGoogle Scholar
  57. [57]
    W. Eisenmenger et al., Appl. Phys. 11 (1976) 307ADSCrossRefGoogle Scholar
  58. [58]
    W. Knaak et al., in A.C. Anderson and J.P. Wolfe (eds.): Proceedings of “Phonon Scattering in Condensed Matter V”, Springer Series in Solid State Science (1986) 174Google Scholar
  59. [59]
    J. Kemmer et al., Nucl. Instr. Meth. A 288 (1990) 92ADSGoogle Scholar
  60. [60]
    N.E. Booth, Appl.Phys.Lett. 50 (1987) 293ADSCrossRefGoogle Scholar
  61. [61]
    H. Kraus et al., Phys. Lett. B231 (1989) 195Google Scholar
  62. [62]
    D.J. Goldie et al., Physica B169 (1991) 443CrossRefGoogle Scholar
  63. [63]
    K.E. Gray, J.Physics F (Metal Physics) 1 (1971) 290ADSCrossRefGoogle Scholar
  64. [64]
    S.B. Kaplan et al, Phys.Rev. B14 (1976) 4854ADSCrossRefGoogle Scholar
  65. [65]
    E. Umlauf and M. Bühler, in: EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy III, Oswald H. W. Siegmund, Editor, Proc. SPIE 1743 (1992) 391Google Scholar
  66. [66]
    S.R. Bandler et al., Phys. Rev. Lett. 68 (1992) 2429ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Hans Kraus
    • 1
  1. 1.Physik-DeptTechnische Universität MünchenGarching bei MünchenGermany

Personalised recommendations