Optical Studies of Nonequilibrium Phonons in Semiconductors

  • A. V. Akimov
  • A. A. Kaplyanskii
  • E. S. Moskalenko


Over the years luminescence has became a powerful technique for the detection of terahertz acoustic phonons in crystals [1], Used mainly in insulators the method is based on the interaction of nonequilibrium phonons with electronic emitting states of “probe” impurities in photoexcited crystals (such as ruby, doped flourite, etc.). The technique has an advantage over the methods using superconducting devices because of a much wider spectral range of phonon frequencies and the lack of the boundary between the crystal and detector.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W.E. Bron, Phonon generation, transport and detection through electronic states in solids, in “Nonequilibrium Phonons in Nonmetalic Crystals”, W. Eisenmenger and A.A. Kaplyanskii, eds., North-Holland, Amsterdam (1986), Ultrashort transient dynamics of phonons and electrons in semiconductors, in “Physics of Phonons”, T. Paszkiewicz, ed., Springer, Berlin-Heidelberg, 1987.Google Scholar
  2. [2]
    L.V. Keldysh and N.N. Sibeldin, Phonon wind in higly excited semiconductors, in “Nonequilibrium Phonons in Nonmetalic Crystals”, W. Eisenmenger and A.A. Kaplyanskii, eds., North-Holland, Amsterdam (1986).Google Scholar
  3. [3]
    N.N. Zinov’ev, I.P. Ivanov, V.I. Kozub, and Y.D. Yaroshetskii, Exciton transport by nonequilibrium phonons and its influence on the recombinational irradiation of semiconductors at high density excitation, Sov. Phys. JETP 57, 1027 (1983).Google Scholar
  4. [4]
    Cz. Jasiukiewicz, D. Lehmann, T. Paszkiewicz, Phonon images of crystals I. Energy and quasimomentum focusing patterns: application to GaAs, Z. Phys. B -Condensed Matter 84, 73 (1991).Google Scholar
  5. [5]
    J.C. Hensel and R.C. Dynes, Interaction of electron-hole drops with ballistic phonons in heat pulses: the phonon wind, Phys. Rev. Lett. 39, 969 (1977).ADSCrossRefGoogle Scholar
  6. [6]
    M. Greenstein, M.A. Tamor and J.P. Wolfe, Propagation of laser generated heat pulses in crystals at low temperatures: spatial filtering of ballistic phonons, Phys. Rev. B 26, 5604 (1982).Google Scholar
  7. [7]
    A.V. Akimov, A.A. Kaplyanskii and E.S. Moskalenko, Phonon hot spot in cuprous oxide crystals, Sov. Phys. Sol. State 29, 288 (1987).Google Scholar
  8. [8]
    F.I. Kreingold and B.S. Kulinkin, Temperature dependence of exciton luminescence and the phonon spectrum in the Cu2O and Ag2O, Optika i Spektroskopiya 33, 706 (1972).Google Scholar
  9. A. Compaan and H.Z. Cummins, Raman scattering, luminescence, and exciton-phonon coupling in Cu2O, Phys. Rev. B 6, 4753 (1972).Google Scholar
  10. [9]
    J.S. Weiner, N. Caswell and P.Y. Yu, Ortho to para-exciton conversion in Cu2O a subnanosecond time–resolved photoluminescence study, Sol. St. Comm. 46, 105 (1983).ADSCrossRefGoogle Scholar
  11. [10]
    Y.B. Levinson, Phonon propagation with frequency down conversion, in “Nonequilibrium Phonons in Nonmetalic Crystals”, W. Eisenmenger and A.A. Kaplyanskii, eds., North-Holland, Amsterdam (1986).Google Scholar
  12. [11]
    D. Marx and W. Eisenmenger, Phonon scattering at crystal surfaces, Z. Physik B-Cond. Matt., 48, 277 (1982).CrossRefGoogle Scholar
  13. [12]
    A.V. Akimov, A.A. Kaplyanskii, E.S. Moskalenko and R.A. Titov, Drag of excitons by heat generated phonon pulses in silicon, Sov. Phys. JETP 67, 2348 (1988).Google Scholar
  14. [13]
    M.A. Tamor and J.P. Wolfe, Drift and diffusion of free excitons in Si, Phys. Rev. Lett. 44, 1703 (1980).ADSCrossRefGoogle Scholar
  15. [14]
    R.B. Hammond and R.N. Silver, Temperature dependence of the exciton lifetime in high-purity silicon, Appl. Phys. Lett. 36, 68 (1980).ADSCrossRefGoogle Scholar
  16. [15]
    P.J. Dean, J.P. Haynes and W. Flood, New radiative recombination processes involving neutral donors and acceptors in silicon and germanium, Phys. Rev. 161, 711 (1967).ADSCrossRefGoogle Scholar
  17. [16]
    B. Etienne, M. Voos and C. Benoit a la Guillaume, Exciton and droplet intrain-ment by nonequilibrium phonons in pure Ge, in Proc. 14th Int. Conf. on Physics of Semiconductors, Edinburgh, B.L.H. Wilson ed., Inst. Phys. Conf. Ser. No 43, Inst. of Physics, Bristol (1978), p.387.Google Scholar
  18. [17]
    J. Weber, W. Sandman, W. Dietsche and H. Kinder, Absence of anomalous Kapitza conductance on freshly cleaved surfaces, Phys. Rev. Lett., 40, 1469 (1978).Google Scholar
  19. H. Kinder, Superconducting tunnel junctions, very high frequency phonons and the Kapitza resistance, in “Physics of Phonons”, T. Paszkiewicz, ed., Springer, Berlin-Heidelberg (1987).Google Scholar
  20. [18]
    W. Dietsche, H. Kinder and P. Leiderer, Kapitza resistance of laser-annealed surfaces, in “Phonon Scattering in Condensed Matter”, W. Eisenmenger, K. Lassmann and S. Dottinger, Springer-Verlag, Berlin, Heidelberg, N.Y., Tokyo (1984).Google Scholar
  21. [19]
    D.V. Kazakovtsev and Y.B. Levinson, The effect of phonon scattering in the substrate on temperature dynamics of a phonon film injector, Phys. Stat. Sol. b 136, 425 (1986).Google Scholar
  22. [20]
    A.V. Akimov, A.A. Kaplyanskii, J. Kočka, E.S. Moskalenko and J. Stuchlik, Scattering of Terahertz phonons in amorphous Si and Ge, Sov. Phys. JETP 73, 742 (1991).Google Scholar
  23. [21]
    W. Dietsche and H. Kinder, Spectroscopy of phonon scattering in glass, Phys. Rev. Lett. 43, 1413 (1979).ADSCrossRefGoogle Scholar
  24. T.I. Galkina, A.Yu. Blinov, M.M. Bonch-Osmolovskii, O. Koblinger, K. Lassman and W. Eisenmenger, Down-conversion of high-frequency acoustic phonons, Phys. Stat. Sol. b 144, K87 (1987).Google Scholar
  25. J. Mebert, B. Maile and W. Eisenmenger, High frequency phonon transmission through amorphous films, in Phonons 89, S. Hunklinger, W. Ludwig and G. Weiss, eds., World Scientific, Singapure (1990).Google Scholar
  26. [22]
    L.J. Challis, G.A. Toombs and F.W. Sheard, Acoustic phonon interaction with a two-dimensional electron gas, T. Paszkiewicz, ed., Lecture Notes in Physics vol. 205, Springer, Berlin (1987).Google Scholar
  27. [23]
    A.V. Akimov, A.A. Kaplyanskii, V.I. Kozub, P.S. Kop’ev and B.Ya. Mel’tser, Effects of acoustic phonon pulses on impurity luminescence of quantum-well semiconductor structures, Sov. Phys. Solid State 29, 1058 (1987).Google Scholar
  28. [24]
    Zh.I. Alferov, P.S. Kop’ev, B.Ya. Mel’tser, A.M. Vasil’ev, S.V. Ivanov, N.N. Ledentsov, I.N. Uraltsev and D.R. Yakovlev, Intrinsic and impurity luminescence in GaAs-AlGaAs structures with quantum wells, Sov. Phys. Semicond. 19, 439 (1985).Google Scholar
  29. [25]
    V. Karpus, Energy and momentum relaxation of two-dimensional charge carriers interacting with deformation acoustic phonons, Sov. Phys. Semicond. 20, 6 (1986).Google Scholar
  30. [26]
    A.V. Akimov, L.J. Challis, J. Cooper, C.J. Mellor and E.S. Moskalenko, Phonon emission from the first and second subbands of a two-dimensional electron gas in silicon detected by exciton luminescence, Phys. Rev. B 45, 1137 (1992).Google Scholar
  31. [27]
    N.P. Hewett, P.A. Russell, L.J. Challis, F. Ouali, V.W. Rampton, A.J. Kent and A.G. Every, Hot electron effects and phonon emission from a two-dimensional electron gas (2DEG), Semicond. Sci. Technol. 4, 955 (1989).ADSCrossRefGoogle Scholar
  32. [28]
    J. Cooper, F. Ouali and L.J. Challis, Semicond. Sci. Technol. 7, B570 (1992).CrossRefGoogle Scholar
  33. [29]
    D. von der Linder, J. Kuhl and H. Klingenberg, Phys. Rev. Lett. 44, 1505 (1980)ADSCrossRefGoogle Scholar
  34. J.A. Kash, J.C. Tsang and J.M. Hvam, Phys. Rev. Lett. 54, 2151 (1985)ADSCrossRefGoogle Scholar
  35. W.E. Bron, T. Juhasz and S. Mehta, Phys. Rev. Lett. 62, 1655 (1989).ADSCrossRefGoogle Scholar
  36. [30]
    B.I. Gelmont, N.N. Zinov’ev, D.I. Kovalev, V.D. Kharchenko, Y.D. Yaroshetskii and I.N. Yassievich, Auger recombination of bound excitons induced by acoustic phonons, Sov. Phys. JETP 67, 613 (1988).Google Scholar
  37. [31]
    N.N. Zinov’ev, D.I. Kovalev, Y.D. Yaroshetskii and A. Yu. Blank, Phonon induced transitions between exciton subband in silicon, JETP Lett. 53, 154 (1991).ADSGoogle Scholar
  38. [32]
    N.N. Zinov’ev, D.I. Kovalev, V.I. Kozub and Y.D. Yaroshetskii, Kinetics of nonequilibrium acoustic phonons in a thin semiconducting specimen, Sov. Phys. JETP 65, 746 (1987).Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • A. V. Akimov
    • 1
  • A. A. Kaplyanskii
    • 1
  • E. S. Moskalenko
    • 1
  1. 1.A.F. Ioffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations