Advertisement

Semi- and Full Interpenetrating Polymer Networks as Stable Second-Order Nonlinear Optical Materials

  • S. K. Tripathy
  • S. Marturunkakul
  • R. J. Jeng
  • L. Li
  • J. I. Chen
  • J. Kumar

Abstract

Polymeric materials with second-order nonlinear optical (NLO) properties have been extensively studied for their potential applications in electro-optic modulation and frequency doubling devices.1,2 The second-order NLO properties in these polymer are present when the chromophores are aligned in a non-centrosymmetric manner. In order to be useful in practical devices, the alignment of NLO chromophores in the poled polymers must be sufficiently stable at temperatures above 100°C. Since the alignment of the chromophores resulting from poling is not in a state of thermodynamic equilibrium, the poled order would relax to a random configuration in an absence of electric field. In a prototypical guest/host system, Stähelin et al. demonstrated a fitting of the temporal relaxation to a Kohlrausch-Williams-Watts (KWW) equation establishing that the decay of the dipole alignment is explained by a single relaxation phenomenon.3 A fit of the relaxation times to the Williams- Landel-Ferry (WLF) equation pointed out that relaxation of the second order NLO properties is mainly related to the glass transition temperature (Tg) of the media. Thus NLO chromophores are usually incorporated in a polymer which has a high Tg in order to prevent the randomization of the poled (aligned) NLO molecules.

Keywords

Interpenetrate Polymer Network Second Harmonic Polyamic Acid Second Harmonic Intensity Increase Crosslinking Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. F. Eaton, Science 253, 281 (1991).PubMedCrossRefGoogle Scholar
  2. 2.
    R. J. Twieg and K. Jain, in Nonlinear Optical Properties of Organic and Polymeric Materials, D. J. Williams, ed., ACS Symposium Series 233, American Chemical Society, Washington, DC, 1982, p 57.Google Scholar
  3. 3.
    M. Stähelin, D. M. Burland, M. Ebert, R. D. Miller, B. A. Smith, R. J. Twieg, W. Volksen, and C. A. Walsh, Appl. Phys. Lett. 61, 1626 (1992).CrossRefGoogle Scholar
  4. 4.
    J. W. Wu, J. F. Valley, S. Ermer, E. S. Binkley, J. T. Kenney, G. F. Lipscomb, and R. Lytel, Appl. Phys. Lett. 58, 225 (1991).CrossRefGoogle Scholar
  5. 5.
    M. A. Hubbard, T. J. Marks, J. Yang, and G. K. Wong, Chem. Mater. 1, 167 (1989).CrossRefGoogle Scholar
  6. 6.
    M. Eich, B. Reck, D. Y. Yoon, C. G. Willson, and G. C. Bjorklund, J. Appl. Phys. 66, 3241 (1989).CrossRefGoogle Scholar
  7. 7.
    R. J. Jeng, Y. M. Chen, J. Kumar, and S. K. Tripathy, J. Macromol. Sci., Pure Appl. Chem. A29, 1115 (1992).CrossRefGoogle Scholar
  8. 8.
    B. K. Mandal, J. Kumar, J. C. Huang, and S. K. Tripathy, Makromol. Chem., Rapid Commun. 12, 63 (1991).CrossRefGoogle Scholar
  9. 9.
    J. Kim, J. L. Plawsky, R. LaPeruta, and G. M. Korenowski, Chem. Mater. 4, 249 (1992).CrossRefGoogle Scholar
  10. 10.
    G. Puccetti, E. Toussaere, I. Ledoux, J. Zyss, P. Griesmar, and C. Sanchez, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 32, 61 (1991).Google Scholar
  11. 11.
    J. A. Manson and L. H. Sperling, Polymer Blends and Composites, Plenum Press, New York, 1976, Chapter 8.CrossRefGoogle Scholar
  12. 12.
    D. Klempner and L. Berkowski, in Encyclopedia of Polymer Science and Engineering, 2nd ed., H. F. Mark, N. M. Bikales, C. G. Overberger, G. Menges, and J. I. Kroschwitz, eds., Wiley, New York, 1986, Vol. 8, pp 279–341.Google Scholar
  13. 13.
    P. M. Cotts and W. Volken, in Polymers in Electronics, T. Davidson, ed., ACS Symposium Series 242, Washington, DC, 1984, p 227.Google Scholar
  14. 14.
    M. Nandi, J. A. Conklin, L. Salvati, and A. Sen, Chem. Mater. 3, 201 (1991).CrossRefGoogle Scholar
  15. 15.
    C. Brinker and G. Scherer, Sol·Gel Science, Academic Press, Olando, 1990.Google Scholar
  16. 16.
    M. Palmlof, T. Hjertberg, and B. A. Sultan, J. Appl. Polym. Sci. 42, 1193 (1991).CrossRefGoogle Scholar
  17. 17.
    R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar, and S. K. Tripathy, Chem. Mater. 4, 1141 (1992).CrossRefGoogle Scholar
  18. 18.
    S. Marturunkakul, J. I. Chen, R. J. Jeng, S. Sengupta, J. Kumar, and S. K. Tripathy, Chem. Mater. 5, 743 (1993).CrossRefGoogle Scholar
  19. 19.
    P. N. Prasad and D. J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, John Wiley & Sons, New York, 1991.Google Scholar
  20. 20.
    R. J. Jeng, Y. M. Chen, J. Kumar, and S. K. Tripathy, unpublished data.Google Scholar
  21. 21.
    S. Marturunkakul, J. I. Chen, L. Li, R. J. Jeng, S. Sengupta, J. Kumar, and S. K. Tripathy, Chem. Mater. 5, 592 (1993).CrossRefGoogle Scholar
  22. 22.
    R. J. Jeng, Y. M. Chen, J. I. Chen, J. Kumar, and S. K. Tripathy, Macromolecules 26, 2530 (1993).CrossRefGoogle Scholar
  23. 23.
    The corrected d33 values for the BPAZO is 18 pm/V at 1.064 µm.Google Scholar
  24. 24.
    S. Chung and J. R. Stevens, Am. J. Phys. 59, 1024 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • S. K. Tripathy
    • 1
  • S. Marturunkakul
    • 1
  • R. J. Jeng
    • 1
  • L. Li
    • 1
  • J. I. Chen
    • 1
  • J. Kumar
    • 1
  1. 1.Center for Advanced Materials, Department of Chemistry and PhysicsUniversity of Massachusetts LowellLowellUSA

Personalised recommendations