Techniques for Ultrastructure Synthesis: Preparation of Second Order Nonlinear Optical Materials

  • Larry R. Dalton
  • Xu Chengzeng
  • Wu Bo
  • Aaron W. Harper

Abstract

Pi-electron organic materials have long been considered promising candidates for the fabrication of nonlinear optical devices such as electro-optic modulators and frequency doublers.1 The main advantages of organic materials have been stated to be their large optical nonlinearities together with ease and low cost of processing into various device forms. Other advantages include relatively high laser damage thresholds.

Keywords

Entropy Zirconium Toluene Epoxy GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. N. Prasad and D. J. Williams, “Introduction to Nonlinear Optical Effects in Molecules and Polymers,” Wiley-Interscience, New York (1991).Google Scholar
  2. 2.
    L. R. Dalton, L. S. Sapochak, M. Chen and L. P. Yu, Ultrastructure concepts of optical microcircuits and polymeric materials, in “Molecular Electronics and Molecular Electronic Devices,” K. Sienicki, ed., CRC Press, Boca Raton (1993).Google Scholar
  3. 3.
    S. Tomaru, S. Zembutsu, M. Kawachi and M. Kobayashi, Second harmonic generation in inclusion compounds, J. Chem. Soc., Chem. Commun. 1207 (1984).Google Scholar
  4. 4.
    Y. Wang, and D. F. Eaton; Optically non-linear organic molecules; Cyclodextrin inclusion complexes; Chem. Phys. Lett. 120:441 (1985)CrossRefGoogle Scholar
  5. 5.
    D. F. Eaton, A. G. Anderson, W. Tam, and Y. Wang, Control of bulk dipolar alignment using guest-host inclusion chemistry: New materials for second harmonic generation, J. Am. Chem. Soc. 109:1886 (1987).CrossRefGoogle Scholar
  6. 6.
    W. Tam, D. F. Eaton, J. C. Calabrese, I. D. Williams, Y. Wang, and A. G. Anderson, Channel inclusion complexation of organometallics: Dipolar alignment for second harmonic generation, Chem. Mater. 1:128 (1989)CrossRefGoogle Scholar
  7. 7.
    S. D. Cox, T. E. Gier and G. D. Studky, Second harmonic generation by the selfaggregation of organic guests in molecular sieve hosts, Chem. Mater. 2:609 (1990)CrossRefGoogle Scholar
  8. 8.
    J. D. Swalen, Optical properties of Langmuir-Blodgett films, J. Mol. Electron. 2:155 (1986)Google Scholar
  9. 9.
    T. Verbiest, A. Persoons and C. Samyn, Synthesis and nonlinear optical properties of preformed polymers forming Langmuir-Blodgett films; Proc. SPIE 1560:353 (1991)CrossRefGoogle Scholar
  10. 10.
    T. L. Penner, N. J. Armstrong, C. S. Willand, J. S. Schildraut and D. R. Robello; Langmuir-Blodgett films for second-order nonlinear optics, Proc. SPIE 1560:377 (1991).CrossRefGoogle Scholar
  11. 11.
    D. Li, M. A. Ratner, T. J. Marks, C. Zhang, J. Yang G. K. Wong, Chromophoric self-assembled multilayers. Organic superlattice approaches to thinfilm nonlinear optical materials, J. Amer. Chem. Soc. 112:7389 (1990);CrossRefGoogle Scholar
  12. 12.
    D. Li, T. J. Marks, C. Zhang, J. Yang and G. K. Wong, Chromophoric self-assembled superlattices as a new class of thin-film second-order nonlinear optical materials; Proc. SPIE 1337:341 (1990).CrossRefGoogle Scholar
  13. 13.
    H. E. Katz, M. L. Schilling, S. Ungashe, T. M. Putvinski, G. Scheller, C. E. D. Chidsey and W. L. Wilson; Electrical and nonlinear optical properties of zirconium phosphonate multilayer assemblies, Proc. SPIE 1560:370 (1991)CrossRefGoogle Scholar
  14. 14.
    H. E. Katz, G. Scheller, T. M. Putvinski, M. L. Schilling, W. L. Wilson and C. E. C. Chidsey, Polar orientation of dyes in robust multilayers by zirconium phosphate-phosphonate interlayers, Science 254:1486 (1991)CrossRefGoogle Scholar
  15. 15.
    F. F. So, S. R. Forrest, Y. Q. Shi and W. H. Steier; Quasi-epitaxial growth of organic multiple quantum well structures by organic molecular beam deposition, Appl. Phys. Lett. 56:674 (1990)CrossRefGoogle Scholar
  16. 16.
    T. Yoshimura, S. Tatsuura and W. Sotoyama, Chemical vapour deposition of polyamic acid thin films by stacking non-linear optical molecules aligned with a strong electric field, Thin Solid Films 207:9 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Eich, B. Reck, D. Y. Yoon, C. G. Wilson and G. C. Bjorklund, Novel secondorder nonlinear optical polymers via chemical cross-linking-induced vitrification under electric field, J. Appl. Phys. 66:3241 (1989)CrossRefGoogle Scholar
  18. 18.
    D. Jungbauer, B. Reck, R. Tweig, D. Y. Yoon, C. G. Wilson and J. D. Swalen, Highly efficient and stable nonlinear optical polymers via chemical cross-linking under electric field, J. Appl. Phys. 56:2610 (1990)Google Scholar
  19. 19.
    Y. Shi, W. H. Steier, M. Chen, L. P. Yu and L. R. Dalton, Thermosetting nonlinear optical polymer: Polyurethane with disperse red 19 side groups, Appl. Phys. Lett. 60:2577 (1992)CrossRefGoogle Scholar
  20. 20.
    M. Chen, L. R. Dalton, L. P. Yu, Y. Shi and W. H. Steier, Thermosetting polyurethanes with stable and large second-order optical nonlinearity, Macromolecules 25:4032 (1992)CrossRefGoogle Scholar
  21. 21.
    D. Jungbauer, I. Teraoka, D. Y. Yoon, B. Reck, J. D. Swalen, R. Tweig and C. G. Wilson, Second-order nonlinear optical properties and relaxation characteristics of poled linear epoxy polymers with tolane chromophores, J. Appl. Phys. 69:8011 (1991).CrossRefGoogle Scholar
  22. 22.
    M. Chen, L. P. Yu, L. R. Dalton, Y. Shi and W. H. Steier, New polymers with large and stable second order nonlinear optical effects, Macromolecules 24:5421 (1991)CrossRefGoogle Scholar
  23. 23.
    L. P. Yu, W. Chan, S. Dikshit, Z. Bao, Y. Shi and W. H. Steier, Thermally curable second-order nonlinear-optical polymer, Appl. Phys. Lett. 60:1655 (1992)CrossRefGoogle Scholar
  24. 24.
    Y. Shi, W. H. Steier, L. P. Yu, M. Chen and L. R. Dalton, Large stable photoinduced refractive index change in a nonlinear optical polyester polymer with disperse red side groups, Appl. Phys. Lett. 58:1131 (1991)CrossRefGoogle Scholar
  25. 25.
    C. Xu, B. Wu, L. R. Dalton, Y. Shi, P. M. Ranon and W. H. Steier, Novel doubleend cross-linkable chromophores for second-order nonlinear optical materials, Macromolecules 25:6714 (1992)CrossRefGoogle Scholar
  26. 26.
    J. Parks, T. J. Marks, J. Yang G. K. Wong; Chromophore-functionalized polymeric thin-film nonlinear optical materials. Effects of in situ cross-linking on second harmonic generation temporal characteristics, Chem. Mater. 2:229 (1990)CrossRefGoogle Scholar
  27. 27.
    C. Xu, B. Wu, L. R. Dalton, P. M. Ranon, Y. Shi and W. H. Steier, New random main-chain; second-order nonlinear optical polymers, Macromolecules 25:6716 (1992)CrossRefGoogle Scholar
  28. 28.
    P. M. Ranon, Y. Shi, W. H. Steier, C. Xu, B. Wu and L. R. Dalton, Randomly stacked nonlinear optical chromophore main-chain polymers for second harmonic generation, Appl. Phys. Lett. 62:2605 (1993)CrossRefGoogle Scholar
  29. 29.
    M. A. Hubbard, T. J. Marks, J. Yang and G. K. Wong; Poled polymeric nonlinear optical materials. Enhanced second harmonic generation stability of cross-linkable matrix/chromophores,. Chem. Mater. 1:167 (1989)CrossRefGoogle Scholar
  30. 30.
    B. K. Mandal, Y. M. Chen, J. Y. Lee, J. Kumar and S. K. Tripathy, Cross-linked stable second-order nonlinear optical polymer by photochemical reaction, Appl. Phys. Lett. 58:2459 (1991)CrossRefGoogle Scholar
  31. 31.
    S. Allen, D. J. Bone, N. Carter, T. G. Ryan, R. B. Sampson, D. P. Devonald and M. G. Hutchings, Electro-optical resins, in “Organic Materials for Nonlinear Optics II,” R. A. Hann and D. Bloor, eds., The Royal Society of Chemistry, London (1991).Google Scholar
  32. 32.
    M. A. Hubbard, T. J. Marks, W. Lin and G. K. Wong, Poled polymeric nonlinear optical materials. Enhanced second harmonic generation temporal stability of epoxy-based matrices containing a difunctional chromophoric co-monomer, Chem. Mater. 4:965 (1992)CrossRefGoogle Scholar
  33. 33.
    R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar and S. K. Tripathy, Second order optical nonlinearity on a modified sol-gel system at 100°C, Chem. Mater. 4:972 (1992)CrossRefGoogle Scholar
  34. 34.
    R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar and S. K. Tripathy, Stable secondorder nonlinear optical polyimide/inorganic composite, Chem. Mater. 4: 1141 (1992)CrossRefGoogle Scholar
  35. 35.
    C. Xu, B. Wu, O. Todorowa, L. R. Dalton, Y. Shi, P. M. Ranon and W. H. Steier, Stabilization of the dipolar alignment of poled nonlinear optical polymers by ultrastructure synthesis, Macromolecules 26:5303 (1993)CrossRefGoogle Scholar
  36. 36.
    C. Xu, B. Wu, M.W. Becker, L. R. Dalton, P. M. Ranon, Y. Shi and W. H. Steier, Random main-chain nonlinear optical polymers: Amino-sulfone azobenzene chromophores for second harmonic generation, Chem. Mater. 5:1439 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Larry R. Dalton
    • 1
  • Xu Chengzeng
    • 1
  • Wu Bo
    • 1
  • Aaron W. Harper
    • 1
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations