Skip to main content

Transgenic Grain Sorghum (Sorghum bicolor) Plants via Agrobacterium

  • Chapter
Improvement of Cereal Quality by Genetic Engineering

Summary

The ability to transfer foreign genes to grain sorghum would potentially allow production of cultivars with improved insect resistance and grain quality (nutritional, baking and brewing). We have established an Agrobacterium-medmted transformation protocol, based predominantly on axenic seedlings of inbred lines. After inoculation of Agrobacterium tumefaciens (LBA4404 pBI121 and AGLO pKIWI105) into wounded coleoptiles of in vitro germinating seedlings, we have generated putative transformants. No selection for antibiotic resistance was imposed. Expression of the GUS marker gene has been detected histochemically in 23 plantlets (from 250 inoculated seedlings). Histochemical GUS expression in non-transformed control sorghum seedlings has not been observed. Two individuals express GUS in all plant parts tested, while some of the remainder have whole tillers expressing the marker gene. Five primary transformants and their selfed progeny have been examined for GUS expression. In most cases, segregation ratios depart from the expected 3:1 ratio, possibly due to chimaerism or gene methylation. Southern analysis has revealed hybridisation to GUS sequences in high molecular weight genomic DNA in both primary transformants and selfed progenies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battraw, M. and Hall, T.C. (1991). Stable transformation of Sorghum bicolor protoplasts with chimeric neomycin phospotransferase II and β-glucuronidase genes. Theoretical and Applied Genetics. 82: 161–168.

    Article  CAS  Google Scholar 

  • Bhaskaran, S. and Smith, R.H. (1988). Enhanced somatic embryogenesis in Sorghum bicolor from shoot tip culture. In Vitro Cellular and Developmental Biology. 24: 65–70.

    Article  Google Scholar 

  • Bhaskaran, S. Smith, R.H. Paliwal, S. and Schertz, K.F. (1987). Somaclonal variation from Sorghum bicolor cell culture. Plant Cell Tissue and Organ Culture. 9: 189–196.

    Article  Google Scholar 

  • Brettel, R.I.S. Wernicke, W. and Thomas, E. (1980). Embryogenesis from cultured immature inflorescences of Sorghum bicolor. Protoplasma. 104: 141–148.

    Article  Google Scholar 

  • Chan, M.T., Chang, H.H., Ho, S.L., Tong, W.F. and Yu, S.M. (1993). Agrobacterium-mediated production of transgenic rice plants expressing a chimeric α-amylase promoter/β-glucuronidase gene. Plant Molecular Biology. 22: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • deBlock, M. Botterman, J. Vandeweile, M. Dockx, J. Thoen, C. Gossele, V. Rao Movva, N. Thompson, C. Van Montagu, M. and Leemans, J. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO Journal. 6: 2513–2518.

    PubMed  CAS  Google Scholar 

  • Dellaporta, S.L., Wood, J. and Hicks, J.B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter. 1: 19–21.

    Article  CAS  Google Scholar 

  • Dunstan, D.I. Short, K.C. Dhaliwal, H. and Thomas, E. (1979). Further studies on plantlet production from cultured tissues of Sorghum bicolor. Protoplasma. 101: 361–365.

    Article  Google Scholar 

  • Fromm, M.E. Morrish, F. Armstrong, C. Williams, R. Thomas, J. and Klein, T.M. (1990). Inheritance and expression in the progeny of transgenic maize plants. Bio/Technology. 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Feinberg, A.P. and Vogelstein, B. (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132: 6–13.

    Article  PubMed  CAS  Google Scholar 

  • Gould, J. Devey, M. Hasegawa, O. Ulian, E.C. Petersen, G. and Smith, R.H. (1991). Transformation of Zea mays using Agrobacterium tumefaciens and the shoot apex. Plant Physiology. 95: 426–434.

    Article  PubMed  CAS  Google Scholar 

  • Hagio, T. Blowers, A.D. and Earle, E.D. (1991). Stable transformation of sorghum cell cultures after bombardment with DNA-coated microprojectiles. Plant Cell Reports. 10: 260–264.

    Article  CAS  Google Scholar 

  • Jefferson, R.A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter. 5: 387–405.

    Article  CAS  Google Scholar 

  • Masteller, V.J. and Holden, D.J. (1970). The growth of organ formation from callus tissue of sorghum. Plant Physiology. 45: 360–364.

    Article  Google Scholar 

  • Purseglove, J.W. (1972). Tropical Crops: Monocotyledons, Longman Group Ltd, Harlow, Essex, UK.

    Google Scholar 

  • Raineri, D.M. Bottino, P. Gordon, M.P. and Nester, E.W. (1990). Agrobacterium-mediated transformation of rice (Oryza sativa L.) Bio/Technology 8: 33–38.

    Article  CAS  Google Scholar 

  • Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D. and Detmer, J.J. (1988). Genetically transformed maize plants from protoplasts. Science. 240: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. 2nd Edition. Cold Spring Harbor Laboratory Press, New York.

    Google Scholar 

  • Shimamoto, K. Terada, R. Izawa, T. and Fujimoto, H. (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature. 338: 274–276.

    Article  CAS  Google Scholar 

  • Somers, D.A., Rines, H.W., Gu, W., Kaeppler, H.F. and Bushnell, W.R. (1992). Fertile, transgenicoat plants. Bio/Technology. 10: 1589–1594.

    Article  CAS  Google Scholar 

  • Vasil, V. Castillo, A.M. Fromm, M.E. and Vasil, I.K. (1992). Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology. 10: 667–674.

    Article  CAS  Google Scholar 

  • Wei, Z. and Xu, Z. (1990). Regeneration of fertile plants from embryogenic suspension culture protoplasts of Sorghum vulgare. Plant Cell Reports. 8: 51–53.

    Google Scholar 

  • Wernicke, W. and Brettel, R.I.S. (1980). Somatic embryogenesis from Sorghum bicolor leaves. Nature. 287: 138–139.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godwin, I., Chikwamba, R. (1994). Transgenic Grain Sorghum (Sorghum bicolor) Plants via Agrobacterium . In: Henry, R.J., Ronalds, J.A. (eds) Improvement of Cereal Quality by Genetic Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2441-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2441-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6037-7

  • Online ISBN: 978-1-4615-2441-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics