Skip to main content
  • 156 Accesses

Summary

Recently, gene transfer into higher plants has made it possible to analyse foreign gene expression in transgenic rice plants. We have constructed a chimeric gene consisting of the promoter, 1st exon, and 1st intron of a maize polyubiquitin gene (Ubi-1) and the coding sequence of the bar gene from Streptomyces hygroscopicus. This construct was transferred into rice protoplasts via electroporation. Transgenic plants grown in a greenhouse were resistant to both bialaphos and phosphinotliricine at a dosage lethal to untransformed control plants. Western blot analysis and enzymatic assays verified expression of the active bar gene-product. Apparent Mendelian segregation for bialaphos resistance and enzymatic activity in T1 progeny of primary transformants are consistent with heritable transmission of the introduced marker gene. When rice plants expressing a bar gene under the control of the maize polyubiquitin promoter were subjected to mycelium of the sheath blight disease pathogen, Rhizoctonia solani, followed by bialaphos treatment, only transgenic plants survived and did not show the disease symptoms. Thus, bialaphos resistant rice plants could be useful for prevention of fungal pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Battraw, M.J. and Hall, T.C. (1990). Histochemical analysis of CaMV 35S promoter-B-glucuronidase gene expression in transgenic rice plants. Plant Mol. Biol 15: 527–538.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M., Barnes, W.M. and Chilton, M. (1983). Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Res 1: 369–385.

    Article  Google Scholar 

  • Christensen, A.H., Sharrock, R.A., and Quail, P.H. (1992). Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol. Biol 18: 675–689.

    Article  PubMed  CAS  Google Scholar 

  • Chu, C.C., Wang, C.C, Sun, C.S., Hsu, C., Yin, K.C., Chu, C.Y. and Bi, F.Y. (1975). Establishment of an efficient medium for anther culture of rice through comparative experiments on the nitrogen sources. Sci Sin 18: 659–668.

    Google Scholar 

  • Datta, S.K., Peterhans, A., Datta, K. and Potrykus, I. (1990). Genetically engineered fertile indica-rice recovered from protoplasts. Bio/Technology 8: 736–740.

    Article  CAS  Google Scholar 

  • De Block, M., De Brouwer, D. and Tenning P. (1989). Transformation of Brassica napus and Brassica olercea using Agrobacterium tumefaciens and the expression of the Bar and neo genes in the transgenic plants. Plants Physiol. 91: 694–704.

    Article  Google Scholar 

  • De Block, M., Botterman, J.U., Vandewiele, M., Dockyx, J., Thoen, C., Gossele, V., Movva, N.R., Thompson, C., Van Montagu, M. and Leemans, J. (1987). Engineering herbicide resistance in plants by expression of a detoxifying enzyme. EMBO J 6: 2513–2518.

    PubMed  CAS  Google Scholar 

  • Dekeyser, R., Claes, B., Marichal, M., Van Montagu, M., Caplan, A. (1989). Evaluation of selectable markers for rice transformation. Plant Physiol. 90: 217–223.

    Article  PubMed  CAS  Google Scholar 

  • Fromm, M.E., Morrish, E, Armstrong, C., Williams, R., Rhomas, J. and Klein, T.M. (1990). Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839.

    Article  PubMed  CAS  Google Scholar 

  • Gordon-Kamm, J.W., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams Jr, W.R., Willetls, N.G., Rice, T.B., Mackey, C.J., Kruegar, R.W., Kausch, A.P. and Lemaux, P.G. (1990). Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    PubMed  CAS  Google Scholar 

  • Goto, G., Toki, S., and Uchimiya, H. (1993) Inheritance of a co-transferred foreign gene in the progenies of transgenic rice plants. Transgenic Res. 2: 300–305.

    Article  CAS  Google Scholar 

  • Hashida, S., Imagawa, M., Inoue, S., Ruan, K.H. and Ishikawa, E. (1984). More useful maleimide compounds for the conjugation of Fab’ to horseradish peroxidase through thiol groups in the hinge. J. Appl. Bio-chem. 6: 56–63.

    CAS  Google Scholar 

  • Hayashimoto, A., Li, Z. and Murai, N. (1990). A PEG-mediated protoplast transformation system for production of fertile transgenic rice plants. Plant Physiology 93: 857–863.

    Article  PubMed  CAS  Google Scholar 

  • Mastuki, R., Onodera, J., Yamauchi, T. and Uchimiya, H. (1989). Tissue-specific expression of the rolC promoter of Ri plasmid in transgenic rice plants. Mol. Gen Genet 220: 12–16.

    Google Scholar 

  • Murakami, T., Anzai, H., Imai, S., Satoh, A., Nagaoka, K. and Thomspson, C.J. (1986). The biolaphos biosynthetic genes of Streptomyces hygroscopicus: Molecular cloning and characterisation of the gene cluster. Mol. Gen Genet 25: 42–50.

    Article  Google Scholar 

  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473–497.

    Article  CAS  Google Scholar 

  • Peng, J. Lyznik, L.A., Lee, L. and Hodges, T.K. (1990) Co-Transformation of indica rice protoplasts with gusA and neo genes. Plant Cell Rep 9: 168–172.

    Article  CAS  Google Scholar 

  • Potrykus, I. (1991) Gene transfer to plants: assessment of published approaches and results. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42: 205–225.

    Article  CAS  Google Scholar 

  • Shimamoto, K., Teda, R., Izawa, T. and Fujimoto, H. (1989). Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338: 274–277.

    Article  CAS  Google Scholar 

  • Shure, M., Wessler, S. and Fedoroff, N. (1983) Molecular identification and isolation of waxy locus in maize. Cell 35: 225–233.

    Article  PubMed  CAS  Google Scholar 

  • Sugaya, S., Hawakawa, K., Handa, T. and Uchimiya, H. (1989) Cell specific expression of the rolC gene of the TL-DNA of Ri plasmid in transgenic tobacco plants. Plant Cell Physiol. 30: 649–653.

    CAS  Google Scholar 

  • Tachibana, K., Watanabe, T., Sekizawa, Y. and Takematsu, T. (1986a). Inhibition of glutamine synthetase and quantitative changes of free amino acids in shoots of bialaphos-treated Japanese barnyard millet. J Pesticide Sci 11: 27–31.

    Article  CAS  Google Scholar 

  • Tachibana, K., Watanabe, T., Sekizawa, Y. and Takematsu, T. (1986b) Accumulation of ammonia in plants treated with bialaphos. J. Pesticide Sci 11: 33–37.

    Article  CAS  Google Scholar 

  • Tada, Y., Sakamoto, M. and Fujimur, T. (1990). Efficient gene introduction into rice by electroporation and analysis of transgenic plants: use of electroporation buffer lacking chloride ions. Theor Appl Genet 80: 475–480.

    Article  CAS  Google Scholar 

  • Tada, Y., Sakamoto, M, Matsuoka, M. and Fujimura, T. (1991). Expression of a monocot LHCP promoter in transgenic rice. EMBO J 7: 1803–1808.

    Google Scholar 

  • Terada, R. and Shimamoto, K. (1990). Expression of CAMV35S-GUS gene in transgenic rice plants. Mol. Gen Genet 220: 389–392.

    Article  CAS  Google Scholar 

  • Thompson, C.J., Movva, N.R., Tizard, R., Crameri, R., Davies, J.E., Lauwereys, M. and Botterman, J. (1987). Characterisation of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J 6: 2519–2523.

    PubMed  CAS  Google Scholar 

  • Toriyama, K., Hirata, K. (1985). Cell suspension and protoplast culture in rice. Plant Sci 41: 179–18

    Article  CAS  Google Scholar 

  • Toriyama, K., Arimoto, Y., Uchimiya, H. and Hinata, K. (1988). Transgenic Rice Plants after Direct Gene Transfer into Protoplasts. Bio/Technology 6: 1072–1074.

    Article  CAS  Google Scholar 

  • Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking E.C. and Davey, M.R. (1988). Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Rep 7: 379–384.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Uchimiya, H., Toki, S. (1994). Genetic Engineering in Rice Plants. In: Henry, R.J., Ronalds, J.A. (eds) Improvement of Cereal Quality by Genetic Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2441-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2441-0_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6037-7

  • Online ISBN: 978-1-4615-2441-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics