Assessment of Methods for the Genetic Transformation of Wheat

  • R. I. S. Brettell
  • D. A. Chamberlain
  • A. M. Drew
  • D. McElroy
  • B. Witrzens
  • E. S. Dennis


In the search for a routine and reliable method for wheat transformation, a wide range of approaches have been tried. Some of these have not withstood rigorous testing, and it appears that many early reports of wheat transformation may have resulted from experimental artefact. We have evaluated two methods for wheat transformation: direct gene transfer to protoplasts and transformation of intact tissues with DNA-coated microparticles. While both methods have yielded transformed wheat tissue, each has its advantages and disadvantages. On balance, microparticle bombardment of freshly initiated cultures is the preferred method for wheat transformation as it avoids the necessity of establishing the longer term embryo-genic cultures required for protoplast isolation, and it results in the recovery of a high proportion of phenotypically normal plants from the transformed materials.


Plant Regeneration Triticum Aestivum Protoplast Isolation Microprojectile Bombardment Maize Streak Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, R., Cocking, E.C., and Thompson, J.A. (1986) Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4, 1087–1090.CrossRefGoogle Scholar
  2. Ahokas, H. (1989) Transfection of germinating barley seed electrophoretically with exogenous DNA. Theor. Appl. Genet. 77, 469–472.CrossRefGoogle Scholar
  3. Bower, R. and Birch, R.G. (1992) Transgenic sugarcane plants via microprojectile bombardment. The Plant Journal 2, 409–416.CrossRefGoogle Scholar
  4. Chamberlain, D.A., Brettell, R.I.S., Last, D.I., Witrzens, B., McElroy, D., and Dennis, E.S. (1994). The use of the Emu promoter with antibiotic and herbicide resistance genes for the selection of transgenic wheat callus and rice plants. Aust. J. Plant Physiol. 21, 95–112.CrossRefGoogle Scholar
  5. Chang, Y.F., Wang, W.C., Warfield, C.Y., Nguyen, H.T., and Wong, J.R. (1991) Plant regeneration from protoplasts isolated from long-term cell cultures of wheat (Triticum aestivum L.). Plant Cell Reports 9, 611–614.CrossRefGoogle Scholar
  6. Christou, P., Ford, T.L., and Kofron, M. (1991) Production of transgenic rice (Oryza sativa L.) plants from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio/Technology 9, 957–962.CrossRefGoogle Scholar
  7. Dale, P.J., Marks, M.S., Brown, M.M., Woolston, C.J., Gunn, H.V., Mullineaux, P.M., Lewis, D.M., Kemp, J.M., Chen, D.F., Gilmour, D.M., and Flavell, R.B. (1989) Agroinfectionof wheat: inoculation of in vitro grown seedlings and embryos. Plant Science 63, 237–245.CrossRefGoogle Scholar
  8. Davey, M.R., Rech, E.L., and Mulligan B.J. (1989) Direct DNA transfer to plant cells. Plant Mol. Biol. 13, 273–285.PubMedCrossRefGoogle Scholar
  9. De la Pena, A., Loerz, H., and Schell, J. (1987) Transgenic plants obtained by injecting DNA into young floral tillers. Nature 325, 274–276.CrossRefGoogle Scholar
  10. Deng, W.Y., Lin, X.Y., and Shao, Q.Q. (1990) Agrobacterium tumefaciens can transform Triticum aestivum and Hordeum vulgare of Gramineae. Science in China (Series B) 33, 27–34.Google Scholar
  11. D’Halluin, K., Bonne, E., Bossut, M, De Beuckeleer, M., and Leemans, J. (1992).Transgenic maize plants by tissue electroporation. The Plant Cell 4, 1495–1505.Google Scholar
  12. Fromm, M., Taylor, L.P., and Walbot, V. (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc. Natl. Acad. Sci. USA 82, 5824–5828.PubMedCrossRefGoogle Scholar
  13. Fromm, M.E., Morrish, F., Armstrong, C., Williams, R., Thomas, J., and Klein, T.M. (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8, 833–839.PubMedCrossRefGoogle Scholar
  14. Gordon-Kamm, W.J., Spencer, T.M., Mangano, M.L., Adams, T.R., Daines, R.J., Start, W.G., O’Brien, J.V., Chambers, S.A., Adams, W.R., Willetts, N.G., Rice, T.B., Mackey, C.J., Krueger, R.W., Kausch, A.P., and Lemaux, P.G. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. The Plant Cell 2, 603–618.PubMedGoogle Scholar
  15. Gould, J., Devey, M., Hasegawa, O., Ulian, E.C., Peterson, G., and Smith, R.H. (1991). Transformation of Zea mays L. using Agrobacterium tumefaciens and the shoot apex. Plant Physiol. 95, 426–434.PubMedCrossRefGoogle Scholar
  16. Grimsley, N.H., Hohn, T., Davies, J.W., and Hohn, B. (1987) Agrobacterium-medmted delivery of infectious maize streak virus into maize plants. Nature 325, 177–179.CrossRefGoogle Scholar
  17. Harris, R., Wright, M., Byrne, M., Varnum, J., Brightwell, B., and Schubert, K. (1988) Callus formation and plantlet regeneration from protoplasts derived from suspension cultures of wheat (Triticum aestivum L.) Plant Cell Reports 7, 337–340.CrossRefGoogle Scholar
  18. He, D.G., Yang, Y.M. and Scott, K.J. (1992) Plant regeneration from protoplasts of wheat (Triticum aestivum cv. Hartog). Plant Cell Reports 11, 16–1CrossRefGoogle Scholar
  19. Hess, D., Dressier, K., and Nimmrichter, R.(1990) Transformation experiments by pipetting Agrobacterium into the spikelets of wheat (Triticum aestivum L.). Plant Science 72, 233–244.CrossRefGoogle Scholar
  20. Klein, T.M., Harper, E.C., Svab, Z., Sanford, J.C., Fromm, M.E., and Maliga, P. (1988) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc. Natl. Acad. Sci. USA 85, 8502–8505.PubMedCrossRefGoogle Scholar
  21. Krens, F.A., Molendijk, L., Wullems, G.J., and Schilperoort, R.A. (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296, 72–74.CrossRefGoogle Scholar
  22. Kyozuka, J., Hayashi, Y., and Shimamoto, K. (1987) High frequency plant regeneration from rice protoplasts by novel nurse culture methods. Mol. Gen. Genet. 206, 408–413.CrossRefGoogle Scholar
  23. Langridge, P., Brettschneider, R., Lazzeri, P., and Loerz, H. (1992) Transformation of cereals via Agrobacte-rium and the pollen pathway: a critical assessment. The Plant Journal 2, 631–638.CrossRefGoogle Scholar
  24. Larkin, P.J., Taylor, B.H., Gersmann, M., and Brettell, R.I.S. (1990) Direct gene transfer to protoplasts. Aust. J. Plant Physiol. 17, 291–302.Google Scholar
  25. Li, L., Qu, R., de Kochko, A., Fauquet, C., and Beachy, R.N. (1993) An improved rice transformation system using the biolistic method. Plant Cell Reports 12, 250–255.CrossRefGoogle Scholar
  26. Li, Z.Y., Xia, G.M., Chen, H.M., and Guo, G.Q. (1992). Plant regeneration from protoplasts derived from embryogenesis suspension cultures of wheat (Triticwn aestivum L.) Journal of Plant Physiology 139, 714–718.Google Scholar
  27. Luo, Z., and Wu, R. (1988) A simple method for transformation of rice via the pollen-tube pathway. Plant Mol. Biol. Reporter 6, 165–17CrossRefGoogle Scholar
  28. Maas, C., and Werr, W. (1989) Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts. Plant Cell Reports 8, 148–151.CrossRefGoogle Scholar
  29. Mooney, P.A., Goodwin, P.B., Dennis, E.S., and Llewellyn, D.J. (1991) Agrobacterium tumefaciens-gene transfer into wheat tissues. Plant Cell, Tissue and Organ Culture 25, 209–218.Google Scholar
  30. Nagata, T. (1989) Cell biological aspects of gene delivery into plant protoplasts by electroporation. International Review of Cytology 116, 229–255.CrossRefGoogle Scholar
  31. Nagata, T., and Takebe, I. (1971) Plating of isolated mesophyll protoplasts on agar medium. Planta (Berl.) 99, 12–20.CrossRefGoogle Scholar
  32. Paszkowski, J., Shillito, R.D., Saul, M., Mandák, V., Hohn, T., Hohn, B., and Potrykus, I. (1984) Direct gene transfer to plants. EMBO J. 3, 2717–2722.PubMedGoogle Scholar
  33. Potrykus, I. (1990) Gene transfer to cereals: an assessment. Bio/Technology 8, 535–542.CrossRefGoogle Scholar
  34. Potrykus, I., Saul, M.W., Petruska, J., Paszkowski, J., Shillito, R.D. (1985) Direct gene transfer to cells of a graminaceous monocot. Mol. Gen. Genet. 199, 183–188.CrossRefGoogle Scholar
  35. Qiao, Y.M., Cattaneo, M., Locatelli, F., and Lupotto, E. (1992) Plant regeneration from long term suspension culture-derived protoplasts of hexploid wheat (Triticwn aestivum L.). Plant Cell Reports 11, 262–265.CrossRefGoogle Scholar
  36. Raineri, D.M., Bottino, P., Gordon, M.P., and Nester, E.W. (1990). Agrobacterium-mediated transformation of rice (Oryza sativa L.) Bio/Technology 8, 33–37.CrossRefGoogle Scholar
  37. Ren, J.G., Jia, J.F., Li, M.Y., and Zhen, G.C. (1989) Plantlet regeneration from protoplasts isolated from callus cultures of immature inflorescences of wheat (Triticwn aestivum L.). Chinese Science Bulletin 34, 1648–1652.Google Scholar
  38. Rhodes, C.A., Pierce, D.A., Mettler, I.J., Mascarenhas, D., and Detmer, J.J. (1989) Genetically transformed maize plants from protoplasts. Science 240, 204–207.CrossRefGoogle Scholar
  39. Sanford, J.C., Klein, T.M., Wolf, E.D., and Allen, N. (1987) Delivery of substances into cells and tissues using a particle bombardment process. Paniculate Science and Technology 5, 27–37.CrossRefGoogle Scholar
  40. Shimamoto, K., Terada, R., Izawa, T., and Fujimoto, H. (1989) Fertile rice plants regenerated from transformed protoplasts. Nature 338, 274–276.CrossRefGoogle Scholar
  41. Somers, D.A., Rines, H.W., Gu, W, Kaeppler, H.F., and Bushneil, W.R. (1992) Fertile, transgenic oat plants. Bio/Technology 10, 1589–1594.CrossRefGoogle Scholar
  42. Toriyama, K., Arimoto, Y, Uchimiya, H., and Hinata, K. (1988) Transgenic rice plants after direct gene transfer into protoplasts. Bio/Technology 6, 1072–1074.CrossRefGoogle Scholar
  43. Vasil, V., Redway, F., and Vasil, I.K. (1990) Regeneration of plants from embryogenie suspension culture protoplasts of wheat (Triticwn aestivum L.). Bio/Technology 8, 429–433.CrossRefGoogle Scholar
  44. Vasil, V., Brown, S.M., Re, D., Fromm, M.E. and Vasil, I.K. (1991). Stably transformed callus lines from microprojectile bombardment of cell suspension cultures of wheat. Bio/Technology 9, 743–747.CrossRefGoogle Scholar
  45. Vasil, V, Castillo, A.M., Fromm, M.E., and Vasil, I.K. (1992) Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus. Bio/Technology 10, 667–674.CrossRefGoogle Scholar
  46. Wilmink, A., and Dons, J.J.M. (1993) Selective agents and marker genes for use in transformation of monocot-yledonous plants. Plant Mol. Biol Reporter 11, 165–185.CrossRefGoogle Scholar
  47. Yamada, Y, Yang, Z.Q., and Tang, D.T. (1986) Plant regeneration from protoplast-derived callus of rice (Oryza sauva L.). Plant Cell Reports 4, 85–88.CrossRefGoogle Scholar
  48. Zhang, H.M., Yang, H., Rech, E.L., Golds, T.J., Davis, A.S., Mulligan, B.J., Cocking, E.C., and Davey, M.R. (1988) Transgenic rice plants produced by electroporation-mediated plasmid uptake into protoplasts. Plant Cell Reports 7, 379–384.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • R. I. S. Brettell
    • 1
  • D. A. Chamberlain
    • 1
  • A. M. Drew
    • 1
  • D. McElroy
    • 1
  • B. Witrzens
    • 1
  • E. S. Dennis
    • 1
  1. 1.Division of Plant IndustryCSIROCanberra CityAustralia

Personalised recommendations