Advertisement

An Overview of Magnetic, Mechanical, Thermal, and Electrical Analyses Performed on The HDM Model Magnets

  • J. F. Lowry
  • O. R. Christianson
  • H. L. Chuboy
  • E. F. Daly
  • D. J. Hall
  • D. C. Johnson
  • M. P. Krefta
  • G. T. Mallick
  • J. F. Roach
  • S. K. Singh
  • J. R. Snyder

Abstract

Westinghouse Electric Corporation (WEC) is under contract to the SSCL1 to design, develop, fabricate, and deliver superconducting dipole magnets for the High Energy Booster. The first phase of this program involves the analysis, fabrication, assembly, and testing of 1.8 m model magnets designed by the SSCL to operate in a vertical dewar. They have many of the operating characteristics (central field, transfer function sag, dipole field purity, temperature and field margins, insulation stress margin, etc.) required of full length High Energy Booster Dipole Magnets (HDM).

Keywords

Field Margin Model Magnet Eddy Current Loss Spatial Harmonic Electrical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    High Energy Booster Dipole Magnet Program, Contract No. SSC-91-B-01705, to WEC.Google Scholar
  2. 2.
    Design Requirements Document for Technology Model Magnet (DSB-101), Document M80-000048, Rev. A, 01-13-92.Google Scholar
  3. 3.
    Interim Design Review Number 1 Data Package, Vol. 1, CDRL-16 (Rev. A), 11-04-92.Google Scholar
  4. 4.
    M. P. Krefta, H. L. Chuboy, and J. H. Parker, Jr., Magnetic field calculations for the HDM model magnets, Paper VII-25, 5th IISSC.Google Scholar
  5. 5.
    J. R. Snyder, HDM model magnet mechanical behavior with high manganese steel collars, Paper IV-16, 5th IISSC.Google Scholar
  6. 6.
    O. R. Christianson et al., HDM model magnet margin, Paper IV-12, 5th IISSC.Google Scholar
  7. 7.
    E. F. Daly and O. R. Christianson, HDM model magnet quench pressure rise estimates, Paper VII-38, 5th IISSC.Google Scholar
  8. 8.
    O. R. Christianson et al., HDM model magnet quench performance, Paper IV-11, 5th IISSC.Google Scholar
  9. 9.
    W. J. Carr, Jr., “AC Loss and Macroscopic Theory of Superconductors,” Ch. 6, Gordon and Breach, NY (1983).Google Scholar
  10. 10.
    G. Snitchler et al., Design and AC loss considerations for the 60 mm dipole magnet in the High Energy Booster, Supercollider 3, J. Nonte Ed., Plenum Press, NY (1991), p. 625.CrossRefGoogle Scholar
  11. 11.
    G. T. Mallick et al., Improved loss calculations for the HDM magnets, Paper VII-35, 5th IISSC.Google Scholar
  12. 12.
    J. F. Roach et al., Design and issues associated with the HDM electrical insulation system, Paper IV-9, 5th IISSC.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. F. Lowry
    • 1
  • O. R. Christianson
    • 1
  • H. L. Chuboy
    • 1
  • E. F. Daly
    • 1
  • D. J. Hall
    • 1
  • D. C. Johnson
    • 1
  • M. P. Krefta
    • 1
  • G. T. Mallick
    • 1
  • J. F. Roach
    • 1
  • S. K. Singh
    • 1
  • J. R. Snyder
    • 1
  1. 1.Westinghouse Science and Technology CenterPittsburghUSA

Personalised recommendations