Physics Detector Simulation Facility Phase II System Software Description

  • B. Scipioni
  • J. Allen
  • C. Chang
  • J. Huang
  • J. Liu
  • S. Mestad
  • J. Pan
  • M. Marquez
  • P. Estep

Abstract

This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    “Report of the task force on computing for the superconducting super collider,” SSC-N-579, M. G. D. Gilchriese (editor), Dec. (1988).Google Scholar
  2. 2.
    “Report of the SSC computer planning committee,” SSC-N-691. L. Price (editor), Dec. (1989).Google Scholar
  3. 3.
    L. R. Cormell, “High energy physics computing at the SSCL,” presented at the 9th International Conference on Computing in High Energy Physics (CHEP91), Tsukuba. Japan, Mar. (1991).Google Scholar
  4. 4.
    B. A. Kinsbury, “The network queuing system,” Sterling Software, 1121 San Antonio Road, Palo Alto, CA, (1986).Google Scholar
  5. 5.
    Manlio Marquez, “Physics detector simulation facility system software description,” SSCL-SR-1182 Dec. (1991).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • B. Scipioni
    • 1
  • J. Allen
    • 1
  • C. Chang
    • 1
  • J. Huang
    • 1
  • J. Liu
    • 1
  • S. Mestad
    • 1
  • J. Pan
    • 1
  • M. Marquez
    • 1
  • P. Estep
    • 1
  1. 1.Physics Computing DepartmentSuperconducting Super Collider LaboratoryDallasUSA

Personalised recommendations