Interaction of Malaria-Infected Cells with the Vascular Wall

  • Giorgio Senaldi
  • Fabienne Tacchini-Cottier
  • Georges E. Grau
Part of the NATO ASI Series book series (NSSA, volume 257)

Abstract

Recent estimations confirm malaria as the most common infectious disease affecting the human species. Worldwide, more than 2 billion people are at risk of infection. About 200 million cases occur every year and approximately 2 million of them result in the death of the patient, especially children in endemic areas (Greenwood et al., 1987). Plasmodium falciparum infection is by far the most severe form of malaria, which accounts for the vast majority of fatal cases. It owes its severity to its frequency of complications (White, 1986) The most dangerous complication is cerebral malaria (CM), which is responsible for about 80% of all fatal cases, although it develops in only 0.5–1% of the episodes of P. falciparum infection. CM is invariably lethal if untreated, and it also kills up to 40% of treated patients. The recovery from CM is occasionally accompanied by permanent, disabling neurological sequelae (Marsh and Greenwood, 1986; Phillips and Warrell, 1986; World Health Organization Malaria Action Program, 1986; Warred 1987).

Keywords

Cholesterol Carbohydrate Transportation Heparin Assure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlborg, N., Berzins, K., Perlman, P., 1991, Definition of the epitope recognized by the Plasmodium falciparum-reactive human monoclonal antibody 33G2. Mol. Biochem. Parasitol. 46:89.PubMedCrossRefGoogle Scholar
  2. Aikawa, M., 1988, Human cerebral malaria. Am. J. Trop. Med Hyg. 39:3.PubMedGoogle Scholar
  3. Aikawa, M., Atkinson, C.T., 1990, Immunoelectron microscopy of parasites. Adv. Immunol. 29:151.Google Scholar
  4. Aikawa, M., Iseki, M., Barnwell, J.W., Taylor, D., Oo, M.M., Howard, R.J., 1990, The pathology of human cerebral malaria. Am. J. Trop. Med Hyg. 43:S30.Google Scholar
  5. Aikawa, M., Udeinya, I.J., Rabbege, J., Dayan, M., Leech, J.H., Howard, R.J., Miller, L.H., 1985, Structural alterations of the membrane of erythrocytes infected with Plasmodium falciparum. J. Protozol. 32:424.Google Scholar
  6. Allred, D.R., Gruenberg, J.E., Sherman I.W., 1986, Dynamic rearrangements of erythrocyte membrane internal architecture induced by infection with Plasmodium falciparum. J. Cell Sci. 81:1.PubMedGoogle Scholar
  7. Asche, A.S., Barnwell, J., Silverstein, R.L., Nachman, R.L., 1987, Isolation of the thrombospondin membrane receptor. J. Clin. Invest. 79:1054.CrossRefGoogle Scholar
  8. Barnwell, J.W., Asch, A.S., Nachman, R.L., Yamaya, M., Aikawa, M., Ingravallo, P., 1989, A human 88-kDa membrane glycoprotein (CD36) functions in vitro as a receptor for a cytoadherence ligand on Plasmodium falciparum-infected erythrocytes.J. Clin. Invest. 84:765.PubMedCrossRefGoogle Scholar
  9. Berendt, A.R., McDowall, A., Graig, A.G., Bates, P.A., Sternberg, M.J.E., Marsh, K., Newbold, C.I., Hogg, N., 1989, The binding site on ICAM-1 for Plasmodium falciparum-infected erythrocytes overlaps, but is distinct from, the LFA-1 binding site.Cell 68:71.CrossRefGoogle Scholar
  10. Berendt, A.R., Simmons, D.L., Tansey, J., Newbold, C.I., Marsh, K., 1992, Intercellular adhesion mole cule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature 341:57.CrossRefGoogle Scholar
  11. Bevilacqua, M.P., Stengelin, S., Gimbrone Jr., M.A., Seed, B., 1989, Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins. Science 243:1160.PubMedCrossRefGoogle Scholar
  12. Brandley, B.K., Swiedler, S.J., Robbins, P.W., 1990, Carbohydrate ligands of the LEC cell adhesion molecules.Cell 63:861.PubMedCrossRefGoogle Scholar
  13. Chulay, J.D., Ockenhouse, C.F., 1990, Host receptors for malaria-infected erythrocytes.Am. J. Trop. Med. Hyg. 43:S6.Google Scholar
  14. Crandall, I., Sherman, I.W., 1991, Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band-3 protein. Parasitology 102:335.PubMedCrossRefGoogle Scholar
  15. Culvenor, J.G., Day, K.P., Anders, R.F., 1991,. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion.Infect. Immun. 59:1183.PubMedGoogle Scholar
  16. Diamond, M.S., Staunton, D.E., Marlin, S.D., Springer, T.A., 1991, Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD54) and its regulation by glycosylation. Cell 65:961.PubMedCrossRefGoogle Scholar
  17. Duguercy, A., Hommel, M., Schrevel, J., 1990, Purification and characterization of 37 kDa proteases from P. falciparum and P. berghei which cleaves erythrocyte cytoskeletal components. Mol. Biochem. Parasitol. 38:233.CrossRefGoogle Scholar
  18. Dustin, M.L., Springer, T.A., 1988, Lymphocyte function-associated antigen-1 (LFA-1) interaction with intercellular adhesion molecule-1 (ICAM-1) is one of at least three mechanisms for lymphocyte adhesion to cultured endothelial cells. J. Cell Biol. 107:321.PubMedCrossRefGoogle Scholar
  19. Falanga, P.B., Butcher, E.C., 1991, Late treatment with anti-LFA-1 (CD11a) antibody prevents cerebral malaria in a mouse model. Eur. J. Immunol. 21:2259.PubMedCrossRefGoogle Scholar
  20. Finley, R.W., Mackey, L.J., Lambert, P.-H., 1982, Virulent P.berghei malaria: prolonged survival and decreased cerebral pathology in T-cell deficient nude mice. J. Immunol. 129:2213.PubMedGoogle Scholar
  21. Grau, G.E., Bieler, G., Pointaire, P., De Kossodo, S., Tacchini-Cottier F., Piguet, P.-F., Vassalli, P., Lambert, P.-H., 1990, Significance of cytokine production and adhesion molecules in malarial immunopathology. Immunology Letters 25:189.PubMedCrossRefGoogle Scholar
  22. Grau, G.E., Fajardo, L.F., Piguet, P.-F., Allet, B., Lambert, P.-H., 1987, Tumor necrosis factor/cachectin as an essential mediator in murine cerebral malaria. Science 237:1210.PubMedCrossRefGoogle Scholar
  23. Grau, G.E., Piguet, P.-F., Vassalli, P., Lambert, P.-H., 1989a, Tumor necrosis factor and other cytokines in cerebral malaria: experimental and clinical data. Immunol. Reviews 112:49.CrossRefGoogle Scholar
  24. Grau, G.E., Pointaire, P., Piguet, P.-F., Vesin, C., Rosen, H., Stamenkovic, I., Takei, F., Vassalli, P., 1991, Late administration of monoclonal antibody to leukocyte function-antigen 1 abrogates incipient murine cerebral malaria. Eur. J. Immunol. 21:2265.PubMedCrossRefGoogle Scholar
  25. Grau, G.E., Taylor, T.E., Molyneux, M.E., Wirima, J.J., Vassalli, P., Hommel, M., Lambert, P.-H., 1989b, Tumor necrosis factor and disease severity in children with falciparum malaria. N. Engl. J. Med. 320:1586.CrossRefGoogle Scholar
  26. Greenwood, B.M., Bradley, A.K., Greenwood, A.M., Byass, P., Jammen, K., Marsh, K., Tulloch, S., Oldfiled, F.S., Hayes, R., 1987, Mortality and morbidity from malaria among children in a rural area of The Gambia, West Africa. Trans. R. Soc. Trop. Med. Hyg. 91:478.CrossRefGoogle Scholar
  27. Greve, J.M., Davis, G., Meyer, A.M., Forte, C.P., Yost, S.C., Marlor, C.W., Kamarck, M.E., McClelland, A., 1989, The major human rhinovirus receptor is ICAM-1. Cell 56:839.PubMedCrossRefGoogle Scholar
  28. Gruenberg, J., Allred, P.R., Sherman, I.W., 1983, A scanning electron microscope analysis of the protrusions (knobs) present on the surface of Plasmodium falciparum-infected erythrocytes. J. Cell BioL 97:795.PubMedCrossRefGoogle Scholar
  29. Haynes, B.F., Telen, M.J., Hale, L.P., Denning, S.M., 1989, CD44 - a molecule involved in leukocyte adherence and T-cell activation. Immunol. Today 10:423.PubMedCrossRefGoogle Scholar
  30. Hommel, M., 1990, Cytoadherence of malaria-infected erythrocytes. Blood Cells 16:605.PubMedGoogle Scholar
  31. Howard, R.J., Barnwell, J.W., Rock, E.P., Jeequaye, J., Ofori-Adjei D., Maloy, W.L., Lyon, J.A., Saul, A., 1988, Two approximately 300 kilodalton Plasmodium falciparum proteins at the surface membrane of infected erythrocytes. Mol. Biochem. Parasitol 27:207.PubMedCrossRefGoogle Scholar
  32. Howard, R.J., Gilladoga, A.D., 1989, Molecular studies related to the pathogenesis of cerebral malaria. Blood 74:2603.PubMedGoogle Scholar
  33. Howard, R.J., Handunetti, S., Hasler, T, Gilladoga, A., de Aguiar, J., Pasloske, B., Morehaed, D., Albrect, G., van Schravendijik, M., 1990, Surface molecules on Plasmodium falciparuminfected erythrocytes involved in adherence. Am. J. Trop. Med. Hyg. 43:S15.Google Scholar
  34. Howard, R.J., Lyon, J.A., Uni, S., Saul, A.J., Aley, S.B., Klotz, F., Panton, L.J., Sherwood, J.A., Marsh, K., Aikawa, M., Rock, E.P., 1987, Transport of an Mr= 300 000 Plasmodium falciparum protein (PfEMP2) from the intraerythrocytic asexual parasite to the cytoplasmic face of the host cell membrane. J. Cell. Biol. 104:1269.PubMedCrossRefGoogle Scholar
  35. Howard, R.J., Uni, S., Aikawa, M., Aley, S.B., Leech, J.H., Lew, A.M., Wellems, T.E., Marsh, K., Rener, J., Taylor, D.W., 1986, Secretion of a malaria histidin-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes. J. Cell Biot 103:1269.CrossRefGoogle Scholar
  36. Hynes, R.O., 1991, The complexity of platelet adhesion to extracellular matrices. Thromb. Hemostasis 66:40.Google Scholar
  37. Zimmerman, GA., Prescott, S.M., McIntyre, T.M., 1992, Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol. Today 13:93PubMedCrossRefGoogle Scholar
  38. Kilejian, A., Jensen, J.B., 1977, A histidine-rich protein from P.falciparum and its interaction with membranes. Bull. Wld. Hlth. O,g. 55:191.Google Scholar
  39. Langreth, S.G., Jensen, J.B., Reese, R.T., Trager, W., 1978, Fine structure of human malaria in vivo. J. Protozol. 25:443.Google Scholar
  40. Lawler, J., Hynes, R.O., 1986, The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J. Cell Biol. 103:1635.PubMedCrossRefGoogle Scholar
  41. Leech, J.H., Barnwell, J.W., Miller, L.H., Howard, R.J., 1984, Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159:1567.PubMedCrossRefGoogle Scholar
  42. Low, P.S., 1986, Structure and function of the cytoplasmic domain of band-3: center of erythrocyte membrane-peripheral protein interactions. Biochim. Biophys. Acta 864:145.PubMedCrossRefGoogle Scholar
  43. MacPherson, G.G., Warrell, M.J., White, N.J., Looareesuwan, S., Warrell, D.A., 1985, Human cerebral malaria. A quantitative ultrastructural analysis of parasitized erythrocyte sequestration. Am. J. Pathol. 119:385.PubMedGoogle Scholar
  44. Maguire, PA., Sherman, I.W., 1990, Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mot Biochem. Parasitol. 38:105.CrossRefGoogle Scholar
  45. Makgoba, M.W., Bernard, A., Sanders, M.E., 1992, Cell adhesion/signalling: biology and clinical applications. Eur. J. Clin. Invest. 22:443.PubMedCrossRefGoogle Scholar
  46. Mantovani, A., Dejana, E., 1989, Cytokines as communication signals between leukocytes and endothelial cells.Immunol. Today 10:370.PubMedCrossRefGoogle Scholar
  47. Mantovani, A., Dejana, E., 1992, Functional responses elicited in endothelial cells by cytokines. In: Kunkel, S.L. and Remick, D.G. (eds); Cytokines in health and disease. Dekker, New York 297–307.Google Scholar
  48. Marlin, S.D., Springer, T.A., 1987, Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function-associated antigen-1 (LFA-1). Cell 51:813.PubMedCrossRefGoogle Scholar
  49. World Health Organization Malaria Action Program, 1986, Severe and complicated malaria. Trans. R. Soc. Trop. Med. Hyg. 80:S1.CrossRefGoogle Scholar
  50. Marsh, K., Greenwood, B.M., 1986, Immunopathology of malaria. Clin. Trop. Med. Communicable Dis. 1:91.Google Scholar
  51. Miller, L.H., Howard, R.J., Carter, R., Good, M.F., Nussenzweig, V., Nussenzweig, R., 1986, Research toward malaria vaccine. Science 234:1349.PubMedCrossRefGoogle Scholar
  52. Nakamura, K.-I., Hasler, T., Morehead, K., Howard, R.J., Aikawa, M., 1992, Plasmodium falciparuminfected erythrocyte receptor(s) for CD36 and thrombospondin are restricted to knobs on the erythrocyte surface. J. Histochem. Cytochem. 40:1419.PubMedCrossRefGoogle Scholar
  53. Nash, G.B., O’Brien, E., Gordon-Smith, E.C., Dormandy, J.A., 1989, Abnormalities in the mechanical properties of red blood cells caused by Plasmodium falciparum. Blood 74:855.PubMedGoogle Scholar
  54. Ockenhouse, C.F., Betageri, R., Springer, TA., Staunton, D.E., 1992a, Plasmodium falciparum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell 68:63.CrossRefGoogle Scholar
  55. Ockenhouse, C.F., Chulay, J.D., 1988, Plasmodium falciparum sequestration: OKM5 antigen (CD36) mediates cytoadherence of parasitized erythrocytes to a myelomonocitic cell line. J. Infect. Dis. 157:584.PubMedCrossRefGoogle Scholar
  56. Ockenhouse, C.F., Klotz, F.W., Tandon, N.N., Jamieson, G.A., 1991, Sequestrin, a CD36 recognition protein on Plasmodium falciparum-infected erythrocytes identified by anti-idiotype antibodies.Proc. Natl. Acad. Sci. U.S.A. 88:3175.PubMedCrossRefGoogle Scholar
  57. Ockenhouse, C.F., Tegoshi, T., Maeno, Y., Benjamin, C., Ho, M., Kan, K.E., Thway, Y., Win, K., Aikawa, M., Lobb, R.R., 1992b, Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J. Exp. Med. 176:1183.CrossRefGoogle Scholar
  58. Oo, M.M., Aikawa, M., Than, T., Aye, T.M., Myint, P.T., Igarashi, I., Schoene, W.C., 1987, Human cerebral malaria: a pathological study. J. Neuropathol. Exp. Neurol. 46:223.PubMedCrossRefGoogle Scholar
  59. Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., Lobb, R., 1989, Direct expression cloning of vascular cell adhesion molecule 1, a vascular cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:1203.PubMedCrossRefGoogle Scholar
  60. Osborn, L., 1990, Leukocyte adhesion to endothelium in inflammation. Cell 62:3.PubMedCrossRefGoogle Scholar
  61. Oquendo, P., Hundt, E., Lawler, J., Seed, B., 1989, CD36 directly mediates cytoadherence of Plasmodium falcipartun parasitized erythrocytes. Cell 58:95.PubMedCrossRefGoogle Scholar
  62. Petersen, C., Nelson, R., Leech, J., Jensen, J., Wollish, W., Schert, A., 1990, The gene product of the Plasmodium falciparum 11.1 locus is a protein larger than one megadalton. Mol. Biochem. Parasitol. 42:189.PubMedCrossRefGoogle Scholar
  63. Phillips, R.E., Warrell, D.A., 1986, The pathophysiology of severe falciparum malaria. Parasitol. Today 2:271.PubMedCrossRefGoogle Scholar
  64. Rice, G.E., Bevilacqua, M.P., 1989, An inducible endothelial cell surface glycoprotein mediates melanoma adhesion. Science 246:1303.PubMedCrossRefGoogle Scholar
  65. Roberts, D.D., Sherwood, J.A., Spitalnik, S.L., Panton, L.J., Howard, R.J., Dixit, V.M., Frazier, W.A., Miller, L.H., Ginsburg, V., 1985, Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence.Nature 318:64.PubMedCrossRefGoogle Scholar
  66. Roberts D.J., Craig, A.J., Berendt, A.R., Pinches, R., Nash, G., Marsh, K., Newbold C.I., 1992, Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357:689.PubMedCrossRefGoogle Scholar
  67. Roman, G.C., 1991, Cerebral malaria: the unsolved riddle. J. Neurol. Sci. 101:1.PubMedCrossRefGoogle Scholar
  68. Ruoslahti, E., Giancotti, F.G., 1989, Integrins and tumor cell dissemination. Cancer Cells 1:119. Schwartz, B.S., 1989, Monocyte synthesis of thrombospondin: the role of platelets. J Biol. Chem. 264:7512.Google Scholar
  69. Sharma, Y.D., 1991, Knobs, knob proteins and cytoadherence in Plasmodium falciparum malaria. Int. J. Biochem. 23:775.PubMedCrossRefGoogle Scholar
  70. Sherman, I.W., Crandall I., Smith, H., 1992, Membrane proteins involved in the adherence of Plasmodium falciparum-infected erythrocytes to the endothelium.Biol. Cell. 74:161.PubMedCrossRefGoogle Scholar
  71. Sherwood, J.A., Roberts, D.D., Marsh, K., Harvey, E.B., Spitalnik, S.L., Miller, L.H., Howard, R.J., 1987, Thrombospondin binding by parasitized erythrocyte isolates in falciparum malaria.Am. J. Trop. Med. Hyg. 36:228.PubMedGoogle Scholar
  72. Shimizu, Y., Newman, W., Tanaka, Y., Shaw, S., 1992, Lymphocyte interactions with endothelial cells. Immunol. Today 13:106.CrossRefGoogle Scholar
  73. Springer, T.A., 1990, Adhesion receptors of the immune system.Nature 346:425.PubMedCrossRefGoogle Scholar
  74. Staunton, D.E., Marlin, S.D., Stratowa, C., Dustin, M.L., Springer, T.A., 1988, Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925.PubMedCrossRefGoogle Scholar
  75. Sun, X., Mosher, D.F., Rapraeger, A., 1989, Heparin sulphate-mediated binding of epithelial cell surface proteoglycan to thrombospondin. J. Biol. Chem. 264:2885.PubMedGoogle Scholar
  76. Talle, M.A., Rao, P.E., Westberg, E., Allegar, N., Makowski, M., Mittler, R.S., Goldstein, G., 1983, Patterns of antigenic expression on human monocytes as defined by monoclonal antibodies. Cell. Immunol. 78:83.PubMedCrossRefGoogle Scholar
  77. Tandon, N.N., Lipsky, R.H., Burgess, W.H., Jamieson, G.A., 1989, Isolation and characterization of platelet glycoprotein IV (CD36).J. Biol. Chem. 264:7570.PubMedGoogle Scholar
  78. Taylor, D.W.W., Parra, M., Chapman, G.B., Stearns, M.E., Rener, J., Aikawa, M., Uni, S., Aley, S.B., Panton, LJ., Howard, RJ., 1987, Localization of Plasmodium falciparum histidine rich protein in the erythrocyte skeleton under knobs. Mol. Biochem. Parasitol. 25:165.PubMedCrossRefGoogle Scholar
  79. Trager, W., Rudzinska, M.A, Bradbury, P.C., 1966, The fine structure of Plasmodium falciparum and its host erythrocyte in natural malarial infections in man. Bull. Wld. Hlth. Org. 35:883.Google Scholar
  80. Trinchieri, G., 1992, Effects of TNF and lymphotoxin on the hematopoietic system. In: Aggarwal, B.B. and Vilcek, J. (eds); Tumor necrosis factor Dekker, New York, 289–313Google Scholar
  81. Udeinya, I.J., Miller, L.H., McGregor, I.A., Jensen, J.B., 1983, Plasmodium falciparum strain-specific antibody blocks binding of infected erythrocytes to amelanotic melanoma cells. Nature 303:429.PubMedCrossRefGoogle Scholar
  82. Udomsangpetch, R., Aikawa, M., Berzins, K., Wahlgren, M., Perlmann, P., 1989a, Cytoadherence of tombless Plasmodium falciparum-infected erythrocytes and its inhibition by a human monoclonal antibody. Nature 338:763.CrossRefGoogle Scholar
  83. Udomsangpetch, R., Wahlin, B., Carlson, J., Berzins, K., Torii, M., Aikawa, M., Perlmann, P., Wahlgren, M., 1989b, Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J. Exp. Med. 169:1835.CrossRefGoogle Scholar
  84. Warrell, D.A., 1987, The pathophysiology of severe falciparum malaria in man. Parasitology 94:S53. Wernsdorfer, W.H., 1980, The importance of malaria in the world. In: Kreier, J.P. (ed); Malaria. Academic Press, London, 1:93.Google Scholar
  85. White, N.J., 1986, Malaria physiopathology. Clin. Trop. Med. Communicable Dis. 1:55.Google Scholar
  86. Winograd, E., Greenan, J.R.T., Sherman, I.W., 1987, Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sci. U.S.A. 84:1931.PubMedCrossRefGoogle Scholar
  87. Winograd, E., Sherman, I.W., 1989a, Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherent mediating protein. J. Cell Biol. 108:23.CrossRefGoogle Scholar
  88. Winograd, E., Sherman, I.W., 1989b, Naturally occurring anti-band-3 autoantibodies recognize a high molecular weight protein on the surface of Plasmodium falciparum-infected erythrocytes. Biochem. Biophys. Res. Comm. 160:1357.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Giorgio Senaldi
    • 1
  • Fabienne Tacchini-Cottier
    • 1
  • Georges E. Grau
    • 1
  1. 1.WHO-Immunology Research and Training Centre Department of PathologyUmversity of GenevaSwitzerland

Personalised recommendations