The Cytoskeleton in the Differentiation of Myelin-Forming Cells

  • Peter J. Brophy
  • C. Stewart Gillespie
  • Bernadette M. Kelly
  • Demetrius A. Vouyiouklis
Part of the NATO ASI Series book series (NSSA, volume 258)


The ensheathment of nerve fibres by oligodendrocytes and Schwann cells requires a dramatic change in cell morphology. Not only must these cells extend long processes in order to insulate axons but they must also migrate considerable distances to reach their targets. Since interactions between the cytoskeleton and the plasma membrane are known to control cell shape and movement, the cellular cytoskeleton must play a fundamental role in myelination.


Glial Fibrillary Acidic Protein Schwann Cell Intermediate Filament Oligodendrocyte Progenitor Cell BioI 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.M. Wood and R.P. Bunge, The biology of the oligodendrocyte. In “Oligodendroglia”Norton WT ed: Plenum Press, NY pp 1–46, 1984.Google Scholar
  2. 2.
    A.L. Gard and S.E. Pfeiffer, Oligodendrocyte progenitors isolated directly from developing telencephalon at a specific phenotypic stage: Myelinogenic potential in a defined environment. Development 106: 119–1321989.Google Scholar
  3. 3.
    A.L. Gard and S.E. Pfeiffer, Two proliferative stages of the oligodendrocyte lineage (A2B5+O4- and O4+GalC-) under different mitogenic control. Neuron 5: 615–625, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    U.C. Raff, Glial cell diversification in the rat optic nerve. Science (Wash) 243: 1450–1455 1989.CrossRefGoogle Scholar
  5. 5.
    R. Wilson and P.J. Brophy, Role for the oligodendrocyte cytoskeleton in myelination. J. Neurosci. Res. 22: 439–448 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    A. Matus. Microtubule-associated proteins: Their potential role in determining neuronal morphology, Annu Rev Neurosci 11: 29–44 1988.PubMedCrossRefGoogle Scholar
  7. 7.
    A. Caceres and K.S. Kosik, Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343: 461–463 1990.PubMedCrossRefGoogle Scholar
  8. 8.
    J.H. Dinsmore and F. Solomon, Inhibition of MAP2 expression affects both morphological and cell division phenotypes of neuronal differentiation. Cell 64: 817–826 1991.PubMedCrossRefGoogle Scholar
  9. 9.
    R.P. Tucker, L.I. Binder and A. Matus, Neuronal microtubule-associated proteins in the embryonic avian spinal cord. J Comp Neurol 271: 44–55, 1988.PubMedCrossRefGoogle Scholar
  10. 10.
    R.P. Tucker, L.I. Binder, C. Viereck, B.A. Hemmings and A.I. Matus, The sequential appearance of low-and high-molecular-weight forms of MAP2 in the developing cerebellum. J Neurosci 8: 4503–4512, 1988.PubMedGoogle Scholar
  11. 11.
    C. Viereck, R.P. Tucker and A. Matus, The adult rat olfactory system expresses microtubule-associated proteins found in the developing brain. Neuroscience 9: 3547–3557, 1989.PubMedGoogle Scholar
  12. 12.
    I. Fischer, Konola and E. Cochary, Microtubule associated protein (MAP1B) is present in cultured oligodendrocytes and colocalizes with tubulin. J Neurosci Res 27: 112–124, 1989.Google Scholar
  13. 13.
    R. Sato-Yoshitake, Y. Shiomura, H. Miyasaka and N. Hirokawa, Microtubule-associated protein 1B: molecular structure, localization, and phosphorylation-dependent expression in developing neurons. Neuron 3: 229–238, 1989.PubMedCrossRefGoogle Scholar
  14. 14.
    D. A. Vouyiouklis and P. J. Brophy, Microtubule-Associated Protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. J. Neurosci. Res., (in press).Google Scholar
  15. 15.
    P.M. Steinert and R.K.H. Liem, Intermediate Filament Dynamics. Cell. 60: 521–523, 1990.PubMedCrossRefGoogle Scholar
  16. 16.
    M. Osborn and K. Weber, Biology of Disease. Tumour diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab. Invest. 48: 3372–3394, 1983.Google Scholar
  17. 17.
    B. Geiger, Intermediate filaments. Looking for a function. Nature (Lond.). 329: 392–393, 1987.CrossRefGoogle Scholar
  18. 18.
    E. Lazarides, Intermediate Filaments: a chemically heterogeneous, developmentally regulated class of proteins. Ann. Rev. Biochem. 51: 219–250, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    U. Lendahl, L.B. Zimmerman and R.D.G. McKay, CNS stem cells express a new class of intermediate filament protein. Cell, 60: 585–595, 1990.PubMedCrossRefGoogle Scholar
  20. 20.
    K.H. Fliegner, G.Y. Ching and R.K.H. Liem, The predicted amino acid sequence of a-internexin is that of a novel neuronal intermediate filament protein. EMBO (Eur. Mol.Biol.Organ.) J. 9: 749–755, 1990.Google Scholar
  21. 21.
    K.R. Jessen and R. Mirsky, Schwann cell precursors and their development. Glia 4: 18–194, 1991.CrossRefGoogle Scholar
  22. 22.
    B.M. Kelly, C.S. Gillespie, D.L. Sherman and P.J. Brophy, Schwann cells of the myelin-forming phenotype express neurofilament protein NF-M. J. Cell Biol., 118, 397–410, 1992.PubMedCrossRefGoogle Scholar
  23. 23.
    L.J. Autilio-Gambetti, J. Sipple, O. Sudilovsky, and P. Gambetti, Intermediate filaments of Schwann cells. J. Neurochem. 38: 774–780, 1982.PubMedCrossRefGoogle Scholar
  24. 24.
    K.R. Jessen, L. Morgan, H.J.S. Stewart, and R. Mirsky, Three markers of adult non-myelin-forming Schwann cells, 217c (Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development. 109: 91–103, 1990.PubMedGoogle Scholar
  25. 25.
    M.K. Escurat, K. Djabali, C. Huc, F. Landon, C. Bécourt, C. Boitard, F., Gros, and M-M. Portier, Origin of the beta cells of the islets of Langerhans is further questioned by the expression of neuronal intermediate filament proteins, peripherin and NF-L, in the rat insulinoma RIN5F cell line. Dev. Neurosci. 13: 424–432, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    M.J. Monteiro and D.W. Cleveland, Expression of NF-L and NF-M in fibroblasts reveals coassembly of neurofilament and vimentin subunits. J. Cell Biol. 108: 579–593, 1989.PubMedCrossRefGoogle Scholar
  27. 27.
    M.J. Monteiro, P.N. Hoffman, J.D. Gearhart, and D.W. Cleveland, Expression of NF-L in both neural and nonneural cells of transgenic mice: increased neurofilament density in axons without affecting caliber. J. Cell Biol. 111: 1543–1557, 1990.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Peter J. Brophy
    • 1
  • C. Stewart Gillespie
    • 1
  • Bernadette M. Kelly
    • 1
  • Demetrius A. Vouyiouklis
    • 1
  1. 1.Department of Biological and Molecular SciencesUniversity of StirlingStirlingScotland, UK

Personalised recommendations