Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 258))

  • 60 Accesses

Abstract

Myelin formation represents a terminal phenotipic expression of oligodendrocytes and Schwann cells that must involve the expression of a myelin specific genetic programme. This process is also influenced by environmental factors and only the correct interaction of such factors makes possible the formation and the maintenance of the myelin sheath able to carry out its functional activities. Among environmental factors the important role of diet and in particular of dietary lipids is becoming more evident1. The importance of lipids can be understood from the fact that lipid deposition and metabolism are intimately connected with the biogenesis of myelin2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y.Y. Yeh, Maternal dietary restriction causes myelin and lipid deficits in the brain of offspring, J. Neurosci. Res. 19: 357 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. P.S. Sastry, Lipids of nervous tissue: composition and metabolism, Prog.LipidRes. 24: 69 (1985).

    Article  CAS  Google Scholar 

  3. J.M. Naughton, Supply of polyenoic fatty acids to the mammalian brainjnt J. Biochem. 13: 21 (1981).

    CAS  Google Scholar 

  4. K. Toda, T. Kobayashi, I. Goto, K. Ohno, Y. Eto, K. Inui and S. Okada, Lysosulfatide (sulfogalactosylsphingosine accumulation in tissuesfrom patients with metachromatic leucodistrophy, J. Neurochem. 55: 1585 (1990).

    Article  PubMed  CAS  Google Scholar 

  5. T. Kobayashi, I. Goto, T. Yamanaka, Y. Suzuki, T. Nakano and K. Suzukijn Fantile and fetal globoid cell leucodistrophy: analysis of galactosylceramide and galactosylsphingosine, Ann.Neurol. 24: 517 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. W.T. Norton and W. Cammer, Chemical pathology of diseases involving myelin, in: “Myelin”P. Morell, ed., Plenum Press, New York-London pp.369 (1984).

    Google Scholar 

  7. J.M. Bourre, M. Francois, C. Weidner et al., Brain cell and tissue recovery in rats made deficient in n-3 fatty acids by alteration of dietary fat, J. Nutr. 119: 15 (1989).

    PubMed  CAS  Google Scholar 

  8. S. Salvati, L. Malvezzi Campeggi, P. Corcos Benedetti, M. Di Felice, V. Gentile, M. Nardini, G. Tornassi, Effects of dietary oils on fatty acid composition and lipid peroxidation of brain membranes (myelin and synaptosomes) in rats, J. Nutr. Biochem. 4: 1 (1993).

    Article  Google Scholar 

  9. P. Divakaran, T. Pavlina, R.C. Johnson, R. Cotter, D. Madsen and R. Wiggins, Dietary supplementation of undernourished rats with soy or safflower oil: effects on myelin polyunsaturated fatty acids, Met.BrainDis. 1: 137 (1986).

    Google Scholar 

  10. J.K. Yao, R.T. Holman, M.F. Lubozynski and P.J. Dyck, Changes in fatty acid composition of peripheral nerve. Myelin in essential fatty acid deficiency, Archs.Biochem.Biophys. 204, 175 (1980).

    Article  CAS  Google Scholar 

  11. R.C. Wiggins, Myelin development and nutritional insufficiency, Brain Res.Rev., 4: 151 (1982).

    Article  CAS  Google Scholar 

  12. M.C. McKenna, A.T. Campagnoni, Effect of pre-and postnatal essential fatty acid deficiency on brain development and myelination, J. Nutr. 109: 1195 (1979).

    PubMed  CAS  Google Scholar 

  13. S.E. Berkow, A.T. Campagnoni, Essential fatty acid deficiency: effect of cross-fostering mice at birth on brain growth and myelination, J. Nutr. 11: 886 (1981).

    Google Scholar 

  14. S.E. Berkow, A.T. Campagnoni, Essential fatty acid deficiency: effect of cross-fostering mice at birth on myelin levels and composition, J. Nutr. 113: 582 (1983).

    PubMed  CAS  Google Scholar 

  15. C. Galli, P. Messeri, A. Oliverio, R. Paoletti, Deficiency of fatty acids during pregnancy and avoidance learning in the progeny, Pharmacol.Res.Commun. 7: 71 (1975).

    Article  Google Scholar 

  16. B. D’Udine, A. Oliverio, Lipid malnutrition and early development on study of motor reflexes and electrocortical activity in the mouse, Behav. Proc. 1: 183 (1976).

    Article  Google Scholar 

  17. H. Schlenk, Odd-numbered and new essential fatty acids, Fed.Proceedings 31: 1430 (1972).

    CAS  Google Scholar 

  18. S. Gozzo, A. Oliverio, S. Salvati, G. Serlupi Crescenzi, B. Tagliamonte and G. Tornassi, Nutritional studies on the lipid fraction of n-alkane grown yeast IV. Effect on behavioral development, Nutr.Rep.Int. 17: 357 (1978).

    CAS  Google Scholar 

  19. G. Hertting and A. Seregi, Formation and function of eicosanoids in the central nervous system, Ann.N.Y. Acad.Sci.559: 84 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. P. Hoffinan and H J. Meist, What about the effect of dietary lipids on endogenous prostanoid synthesis? A state-of-the art review, Biomed.Biochim.Acta 46: 639 (1987).

    Google Scholar 

  21. G.Y. Sun and R.A. MacQuarrie, Deacylation-reacylation of arachidonoyl groups in cerebral phospholipids, Ann.N.Y. Acad.Sci.559: 37 (1989).

    Article  PubMed  CAS  Google Scholar 

  22. T. Kurihara and Y. Tsukada, The regional and subcellular distribution of 2′: 3′-cyclic nucleotide 3′-phosphohydrolase in the central nervous system, J. Neurochem. 14: 1167 (1967).

    Article  PubMed  CAS  Google Scholar 

  23. R.W. Olafson, G.I. Drummond and J.F. Lee, Studies on 2′-3′-cydic nucleotide 3′-phosphohydrolase from brain, Can. J. Biochem. 47: 961 (1969).

    Article  PubMed  CAS  Google Scholar 

  24. S. Jacobson, Sequence of myelination in the brain of the albino rat A. Cerebral cortex, thalamus and related structures, J. Comp.Neurol. 121: 5 (1963).

    Article  PubMed  CAS  Google Scholar 

  25. B. Bjelke, A. Seiger, Morphological distribution of MBP-like immunoreactivity in the brain during development. Int J. Devl.Neurosci.7: 145 (1989).

    Article  CAS  Google Scholar 

  26. N.H. Sternberger, J. Itoyama, M.W. Kies, H de F. Webster, Immunocytochemical method to identify basic protein in myelin-forming oligodendrocytes of newborn rat CN.S., J. Neurocytol.7: 251 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. A. Confaloni, C. Avellino, L. Malvezzi Campeggi and S. Salvati, Accelerated myelinogenesis induced by dietary lipids in rats, Dev.Neurosci. (1993)in press.

    Google Scholar 

  28. B.K. Hartman, H.C. Agrawal, D. Agrawal, S. Kalmbach, Development andmaturation of central nervous system myelin: comparison of immunohistochemical localization of proteolipid protein and basic protein in myelin and oligodendrocytes, Proc.Natl.Acad.Sci. USA 79: 4217 (1982).

    Article  PubMed  CAS  Google Scholar 

  29. C. Hildebrand Ultrastructural and light-microscopic studies of the developing feline spinal cord white matter I. The nodes of Ranvier, ActaPhysiol.Scand. 363: 81 (1971).

    Google Scholar 

  30. S.G. Waxman and J.A. Black, Freeze-fracture ultrastructure of the perinodal astrocyte and associated glial junctions, BrainRes. 308: 77 (1984).

    CAS  Google Scholar 

  31. T.J. Sims, S.G. Waxman, J.A. Black and S.A. Gilmore, Perinodal astrocitic processes at nodes of Ranvier in developing normal and glial cell deficient rat spinal cord, Brain RES. 337: 321 (1985).

    Article  PubMed  CAS  Google Scholar 

  32. S.G, Waxman and J.M. Ritchie, Organization of ion channels in the myelinated nerve fiber, Science 228: 1502 (1985).

    Article  PubMed  CAS  Google Scholar 

  33. J.A. Black and S.G. Waxman, The perinodal astrocyte, Glia 1: 169 (1988).

    Article  PubMed  CAS  Google Scholar 

  34. W. Imagarwa, G.K. Bandyopadhyay, D. Wallace, S. Naudi, Phospholipids containing polyunsaturated fatty acyl groups are mitogenic for normal mouse mammary epithelial cells in serum-free primary cell culture, Proc.Natl.Acad.Sci.USA 86: 4122 (1989).

    Article  Google Scholar 

  35. M.C. Raff, R.H. Miller, M.D. Noble, A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on the culture medium. Nature 303, 390 (1983).

    Article  PubMed  CAS  Google Scholar 

  36. M.C. Raff, LE. Lillien, W.D. Richardson, J.F. Burne, M.D. Noble, Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture, Nature 333: 562 (1988).

    Article  PubMed  CAS  Google Scholar 

  37. M. Noble, S.C. Bornett, O. Bogher, H. Land, G. Wolswijk, D. Wren, Control of division and differentiation in oligodendrocyte type 2-astrocyte progenitor cells, Ciba Found Symp. 150: 227 (1990).

    PubMed  CAS  Google Scholar 

  38. M. Noble, J. Fok-Seang, G. Wolswijk, D. Wren, Development and regeneration in the central nervous system, Phil.Trans.R. SocLond. B.327: 127 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Salvati, S., Attorri, L., Avellino, C., Di Biase, A., Confaloni, A. (1994). Dietary Lipids: Exogenous Control of Myelination. In: Salvati, S. (eds) A Multidisciplinary Approach to Myelin Diseases II. NATO ASI Series, vol 258. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2435-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2435-9_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6034-6

  • Online ISBN: 978-1-4615-2435-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics