Skip to main content

Factors Controlling the Directionality of Mesoderm Cell Migration in the Xenopus Gastrula

  • Chapter
Experimental and Theoretical Advances in Biological Pattern Formation

Part of the book series: NATO ASI Series ((NSSA,volume 259))

Abstract

The goal-directed migration of cells is a wide-spread phenomenon in the development of organisms. Examples range from the aggregation of Dictyostelium amoeba during slug formation to the pathfinding of axonal growth cones during development of the nervous system. These examples typically share the characteristic that it is a population of single, isolated cells (or motile parts of cells as in the case of growth cones) which moves toward a pre-specified target. In contrast to this, the directional migration of the mesoderm during Xenopus gastrulation involves the movement of a multilayered coherent cell aggregate on a planar substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carter, S. B. 1965. Principles of cell motility: The direction of cell movement and cancer invasion. Nature, 208, 1183–1187.

    Article  PubMed  CAS  Google Scholar 

  • Darribere, T., Guida, K., Larjava, H., Johnson, K. E., Yamada, K. M., Thiery, J.-P., & Boucaut, J.-C. 1990. In vivo analyses of integrin ×1 subunit function in fibronectin matrix assembly. J. Cell. Biol., 110, 1813–1823.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. 1985. Molecular biology of fibronectin. Ann. Rev. Cell Biol., 1, 67–90.

    Article  PubMed  CAS  Google Scholar 

  • Hynes, R. O. 1987. Integrals: A family of cell surface receptors. Cell, 48, 549–554.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. E., Darribere, T., & Boucaut, J.-C. 1990. Cell adhesion to extracellular matrix in normal Rana Pipiens gastrulae and in arrested hybrid gastrulae Rana pipiens (m.) and Rana esculenta (f.). Dev. Biol., 137, 86–99.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, K. E., Darribere, T., & Boucaut, J.-C. 1992. Ambystoma maculatum gastrulae have an oriented, fibronectin-containing extracellular matrix. J. exp. Zool, 261, 458–468.

    Article  PubMed  CAS  Google Scholar 

  • Keller, R., & Hardin, J. 1987. Cell behaviour during active cell rearrangement: Evidence and speculations. J. Cell Sci. Suppl., 8, 369–393.

    PubMed  CAS  Google Scholar 

  • Keller, R., & Winklbauer, R. 1992. The cellular basis of amphibian gastrulation. Current Topics in Dev. Biol., 27, 39–89.

    Article  CAS  Google Scholar 

  • Keller, R. E. 1986. The cellular basis of amphibian gastrulation. In The Cellular Basis of Morphogenesis, Browder, C. W. (ed). pp. 241–327, New York/London: Plenum. Development Biology, Vol. 2.

    Chapter  Google Scholar 

  • Nakatsuji, N. 1986. Presumptive mesoderm cells from Xenopus laevis gastrulae attach to and migrate on substrata coated with fibronectin or laminin. J. Cell Sci., 86, 109–118.

    PubMed  CAS  Google Scholar 

  • Nakatsuji, N., & Johnson, K. E. 1983. Conditioning of a culture substratum by the ectodermal layer promotes attachment and oriented locomotion by amphibian gastrula mesodermal cells. J. Cell Sci., 59, 43–60.

    PubMed  CAS  Google Scholar 

  • Pierschbacher, M. D., & Ruoslahti, E. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 309, 30–33.

    Article  PubMed  CAS  Google Scholar 

  • Riou, J.-E, Shi, D.-L., Chiquet, M., & Boucaut, J.-C. 1990. Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulation. Dev. Biol., 137, 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Shi, D.-L., Darribere, T., Johnson, K. E., & Boucaut, J.-C. 1989. Initiation of mesodermal cell migration and spreading relative to gastrulation in the urodele amphibian Pleurodeles waltl. Development, 105, 351–363.

    Google Scholar 

  • Smith, J. C., Symes, K., Hynes, R. O., & DeSimone, D. 1990. Mesoderm induction and the control of gastrulation in Xenopus laevis: The role of fibronectin and integrins. Development, 108, 229–238.

    PubMed  CAS  Google Scholar 

  • Winklbauer, R. 1990. Mesodermal cell migration during xenopus gastrulation. Dev. Biol., 142, 155–168.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R., & Nagel, M. 1991. Directional mesoderm cell migration in the Xenopus gastrula. Dev. Biol., 148, 573–589.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R., & Selchow, A. 1992. Motile behavior and protrusive activity of migratory mesoderm cells from the Xenopus gastrula. Dev. Biol., 150, 335–351.

    Article  PubMed  CAS  Google Scholar 

  • Winklbauer, R., Selchow, A., Nagel, M., Stoltz, C., & Angres, B. 1991. Mesodermal cell migration in the Xenopus gastrula. In Gastrulation: Movements, Patterns and Molecules. New York: Plenum Press.

    Google Scholar 

  • Winklbauer, R., Selchow, A., Nagel, M., & Angues, B. 1993. Cell interaction and its role in mesoderm cell migration during Xenopus gastrulation. Dev. Dyn. (In press).

    Google Scholar 

  • Yamada, K. M., & Kennedy, D. W. 1984. Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol., 99, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Yost, H. J. 1992. Regulation of vertebrate left-right asymmetries by extracellular matrix. Nature, 357, 158–161.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Winklbauer, R., Nagel, M., Selchow, A. (1993). Factors Controlling the Directionality of Mesoderm Cell Migration in the Xenopus Gastrula. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds) Experimental and Theoretical Advances in Biological Pattern Formation. NATO ASI Series, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2433-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2433-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6033-9

  • Online ISBN: 978-1-4615-2433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics