Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 259))

  • 120 Accesses

Abstract

Human development starts with the production of sperm and egg and ends with death. In between lie the embryo, the fetus, the child and the adult. Most developmental biologists are interested primarily in a short period of twelve weeks lying between fertilisation and fetus, The period of embryogenesis. During embryogenesis the fertilised egg cell develops into an immature form of the normal adult organism. A single relatively unspecialised cell will divide into 25 × 109 cells, comprising a few hundred different cell types, arranged in a complex three dimensional pattern. During this period of human development three main cellular activities are involved. Firstly, the cells have to divide. Initially this is simple and repetitive, but gradually a complicated pattern of varying cell cycle times will emerge. Secondly, the cells must differentiate in different ways so as to produce the diversity of cell types. This involves both transcription of new genes and a progressive restriction of a cell’s potential differentiative paths. Thirdly, the different cell types must be arranged in an appropriate pattern so as to produce a functional embryo. Pattern formation can involve both decision making that leads to differential transcription and rearrangement of cells that have already differentiated. If we compare human development with common laboratory models it is clear that they consist of similar cells arranged in different patterns. A human embryo comprises much the same cell types as a monkey, a mouse, or even a magpie. The difference lies in the details of the three dimensional pattern as much as in the gene products. My main interest lies in factors that control this pattern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailly, J., Delescluse, C, Bernardon, J. M., Charpentier, B., Martin, B., Pilgrim, W. R., Shroot, B., & Darmon, M. 1990. Differentiation of F9 embryonal carcinoma cells by synthetic retinoids: amplitude of plasminogen activator production does not depend on retinoid potency or affinity for F9 nuclear retinoic acid receptors. Skin Pharmacol., 3, 256–267.

    Article  PubMed  CAS  Google Scholar 

  • Bryant, S. V., Hayamizu, T., Wanek, N., & Gardiner, D. M. 1991. Position dependent properties of limb cells. In Developmental Patterning of the Vertebrate Limb, Hinchliffe, J. M. Hurle J. R., & Summerbell, D. (eds). pp. 133–142, New York: Plenum Press.

    Chapter  Google Scholar 

  • Crick, F. H. C. 1970. Diffusion in embryogenesis. Nature, 225, 420–422.

    Article  PubMed  CAS  Google Scholar 

  • Driesch, H. 1892. The potency of the first two cleavage cells in echinoderm development, experimental production of partial and double formation. In Foundations of Experimental Embryology, Willier, B. H., & Oppenheim, J. M. (eds). pp. 38-50, New York 1964: Prentice Hall.

    Google Scholar 

  • Gierer, A., & Meinhardt, H. 1972. A theory of biological pattern formation. Kybernetik, 12, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, J. S., & de Beer, G. R. 1934. The Elements of Experimental Embryology. Cambridge University Press.

    Google Scholar 

  • Maden, M., & Summerbell, D. 1986. Retinoic-acid-binding protein in the chick limb bud: identification at developmental stages and binding affinities of various retinoids. J. Embryol. Exp. Morphol., 97, 239–250.

    PubMed  CAS  Google Scholar 

  • Maden, M., Summerbell, D., Maignan, J., Darmon, M., & Shroot, B. 1991. The respecification of limb pattern by new synthetic retinoids and their interaction with cellular retinoic acid-binding protein. Differentiation, 67, 49–55.

    Article  Google Scholar 

  • Murray, J. D. 1981. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil. Trans. R. Soc. Lond., B295, 473–496.

    Google Scholar 

  • Roux, W. 1988. Contributions to the developmental mechanics of the embryo. In Foundations of Experimental Embryology, Willier, B. H., & Oppenheim, J. M. (eds). pp. 20-37, New York 1964: Prentice Hall.

    Google Scholar 

  • Saunders, J. W., & Gasseling, M. T. 1968. Ectodermal-mesenchymal interactions in the origin of limb symmetry. In Epithelial-Mesenchymal Interactions, Fleischmajer, R., & Billingham, R. (eds). pp. 78–97, Baltimore: Williams & Wilkins.

    Google Scholar 

  • Summerbell, D. 1979. The zone of polarising activity: Evidence for a role in normal chick limb morphogenesis. J. Embryol. exp. Morph., 50, 217–233.

    PubMed  CAS  Google Scholar 

  • Summerbell, D. 1981. The control of growth and the development of pattern across the antero-posterior axis of the chick limb bud. J. Embryol. exp. Morph., 63, 161–180.

    PubMed  CAS  Google Scholar 

  • Summerbell, D. 1983. The effect of local application of retinoic acid to the anterior margin of the developing chick limb. J. Embryol. exp. Morph., 78, 269–289.

    PubMed  CAS  Google Scholar 

  • Summerbell, D., & Harvey, F. 1983. Vitamin A and the control of pattern in developing limbs. In Limb Development and Regeneration, Fallon, J. F., & Caplan, A. I. (eds). pp. 109–118, New York: A. R. Liss.

    Google Scholar 

  • Summerbell, D., & Waterson, N. 1991. Does retinoic acid organise a limb or induce a ZPA? In Developmental Patterning of the Vertebrate Limb, Hinchliffe, J. M. Hurle J. R., & Summerbell, D. (eds). pp. 151–155, New York: Plenum Press.

    Chapter  Google Scholar 

  • Tabin, C. 1991. Retinoids, homeoboxes, and growth factors — toward molecular-models for limb development. Cell, 66, 199–217.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C., & Eichele, G. 1987. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature, 327, 625–628.

    Article  PubMed  CAS  Google Scholar 

  • Thaller, C, & Eichele, G. 1990. Isolation of 3,4-didehydroretinoic acid, a novel morphogenetic signal in the chick wing bud. Nature, 345, 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C. 1991. Retinoic acid and limb patterning and morphogenesis. In Developmental Patterning of the Vertebrate Limb, Hinchliffe, J. M. Hurle J. R., & Summerbell, D. (eds). pp. 143–149, New York: Plenum Press.

    Chapter  Google Scholar 

  • Tickle, C., Summerbell, D., & Wolpert, L. 1975. Positional signalling and specification of digits in chick limb morphogenesis. Nature, 254, 199–202.

    Article  PubMed  CAS  Google Scholar 

  • Tickle, C., Alberts, B., Wolpert, L., & Lee, J. 1982. Local application of retinoic acid to the limb bond mimics the action of the polarizing region. Nature, 296, 564–565.

    Article  PubMed  CAS  Google Scholar 

  • Turing, A. M. 1952. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond., B237, 37–72.

    CAS  Google Scholar 

  • Wanek, N., Gardiner, D. M., Muneoka, K., & Bryant, S. V. 1991. Conversion by retinoic acid of anterior cells into ZPA cells in the chick wing bud. Nature, 350, 81–83.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol., 25, 1–47.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Summerbell, D. (1993). Retinoic Acid: An Autocatalytic Morphogen. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds) Experimental and Theoretical Advances in Biological Pattern Formation. NATO ASI Series, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2433-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2433-5_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6033-9

  • Online ISBN: 978-1-4615-2433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics