Skip to main content

Patterns Formed Through Cell-Cell Interactions: Spontaneous Selection of Dominant Directions

  • Chapter
Experimental and Theoretical Advances in Biological Pattern Formation

Part of the book series: NATO ASI Series ((NSSA,volume 259))

  • 120 Accesses

Abstract

This paper presents an example of patterns formed through the direct interactions of cells. After a brief review of classical ideas from pattern formation, we introduce the idea that the selection of a dominant direction in an initially isotropic medium is analogous to a type of pattern formation, not in physical space, but rather in angle-space. The pattern forms on a unit circle, i. e. on a range of angles 0 < θ < 2π. It is shown that as a result of cell-cell interactions, uniform angular distributions of cells are unstable and that peaks in these distributions form spontaneously. These peaks represent dominant directions that arise in the cell population as a result of clustering and alignment of cells with one another. (See Figure 19.1). The paper will concentrate on alignment of populations of fibroblasts in vitro, and on analysis of typical equations that arise in modelling angular distributions. Applications of similar models to formation of preferred orientations in populations of organisms and in macromolecular networks will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bard, J. B. L. 1981. A model for generating aspects of zebra and other mammalian coat patterns. J. Theor Biol., 93, 363–385.

    Article  PubMed  CAS  Google Scholar 

  • Bard, J. B. L., & French, V. 1984. Butterfly wing patterns: how good a determining mechanism is the simple diffusion of a single morphogen? J. Embryol. exp. Morph., 84, 255–274.

    PubMed  CAS  Google Scholar 

  • Civelekoglu, G. 1992. Actin alignment mediated by actin binding proteins. Ph.D. thesis, UBC, Vancouver.

    Google Scholar 

  • Edelstein-Keshet, L. 1992. Trail following as an adaptable mechanism for population behaviour. In 3D Animal Aggregations. (Submitted).

    Google Scholar 

  • Edelstein-Keshet, L., & Ermentrout, G. B. 1989. Models for branching networks in two dimensions. SIAMJ. Appl. Math., 49(4), 1136–1157.

    Article  Google Scholar 

  • Edelstein-Keshet, L., & Ermentrout, G. B. 1990. Models for contact-mediated pattern formation: cells that form parallel arrays. J. Math. Biol., 29, 33–58.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G. B., & Cowan, J. D. 1979. A mathematical theory of visual hallucination patterns. Biol. Cybernet, 34, 137–150.

    Article  CAS  Google Scholar 

  • Ermentrout, G. B., Campbell, J., & Oster, G. 1986. A model for shell patterns based on neural activity. Veliger, 28, 369–388.

    Google Scholar 

  • Gierer, A., & Meinhardt, H. 1972. A theory of biological pattern formation. Kybernetik, 12, 30–39.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, L. G. 1987. What is the status of reaction-diffusion theory thirty four years after Turing? J. Theor. Biol., 125, 369–384.

    Article  PubMed  CAS  Google Scholar 

  • Lengyel, I., & Epstein, I. R. 1992. A chemical approach to designing Turing patterns in reaction diffusion systems. Proc. Natl. Acad. Sci., 89, 3977–3979.

    Article  PubMed  CAS  Google Scholar 

  • Levin, S. A., & Segel, L. A. 1985. Pattern generation in space and aspect. SIAM Review, 27(1), 45–67.

    Article  Google Scholar 

  • Meinhardt, H. 1978. Models for the ontogenetic development of higher organisms. Rev. Physiol. Biochem. Pharmacol, 80, 47–104.

    PubMed  CAS  Google Scholar 

  • Meinhardt, H. 1982. Models of biological pattern formation. New York: Academic Press.

    Google Scholar 

  • Murray, J. D. 1981a. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Phil Trans. Roy. Soc. (London), B295, 473–496.

    Google Scholar 

  • Murray, J. D. 1981b. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol., 88, 161–199.

    Article  Google Scholar 

  • Murray, J. D. 1982. Parameter space for Turing instability in reaction-diffusion mechanisms: a comparison of models. J. Theor. Biol., 98, 143–163.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J. D. 1988. How the leopard gets its spots. Sci. Amer, 258(3), 80–87.

    Article  Google Scholar 

  • Murray, J. D. 1989. Mathematical biology. New York: Springer Verlag.

    Google Scholar 

  • Murray, J. D., & Oster, G. F. 1984. Cell traction models for generating pattern and form in morphogenesis. J. Math. Biol., 19, 265–279.

    Article  PubMed  CAS  Google Scholar 

  • Murray, J. D., Oster, G. F., & Harris, A. K. 1983. A mechanical model for mesenchymal morphogenesis. J. Math. Biol., 17, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Odell, G. M., Oster, G., Alberch, P., & Burnside, B. 1981. The mechanical basis of morphogenesis, I. epithelial folding and invagination. Dev. Biol., 85, 446–462.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G. F., & Murray, J. D. 1989. Pattern formation models and developmental constraints. J. exp. Zool., 251, 186–202.

    Article  PubMed  CAS  Google Scholar 

  • Oster, G. F., Murray, J. D., & Harris, A. K. 1983. Mechanical aspects of mesenchymal morphogenesis. J. Embryol. exp. Morph., 78, 83–125.

    PubMed  CAS  Google Scholar 

  • Othmer, H. G. 1969. Interactions of reaction and diffusion in open systems. Ph.D. thesis, Chemical Engineering Dept., Univ. of Minnesota.

    Google Scholar 

  • Ouyang, Q., & Swinney, H. L. 1991. Transition from a uniform state to hexagonal and striped Turing patterns. Nature, 352, 610–612.

    Article  Google Scholar 

  • Raignier, A., & van Boven, J. 1955. étude taxonomique, biologique, et biometrique des Dorylusdu sous-genre Anomma(hymenoptera: Formicidae) Annals du Musee Royal du Congo Belge n.s. 4. sciences zoologiques, 2, 1–359.

    Google Scholar 

  • Swindale, N. V. 1980. A model for the formation of ocular dominance stripes. Proc. R. Soc. Lond., B208, 243–264.

    Article  Google Scholar 

  • Turing, A. M. 1952. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond., B237, 37–72.

    CAS  Google Scholar 

  • Weliky, M., & Oster, G. 1990. The mechanical basis of cell rearrangement I epithelial morphogenesis during fundulus epiboly. Development, 109, 373–386.

    PubMed  CAS  Google Scholar 

  • Winfree, A. T. 1991. Crystals from dreams. Nature, 352, 568–569.

    Article  Google Scholar 

  • Young, D. A. 1984. A local activator-inhibitor model of vertebrate skin patterns. Math. Biosci., 72, 51–58.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edelstein-Keshet, L. (1993). Patterns Formed Through Cell-Cell Interactions: Spontaneous Selection of Dominant Directions. In: Othmer, H.G., Maini, P.K., Murray, J.D. (eds) Experimental and Theoretical Advances in Biological Pattern Formation. NATO ASI Series, vol 259. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2433-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2433-5_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6033-9

  • Online ISBN: 978-1-4615-2433-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics