Skip to main content

A Numerical Solution for the Nonlinear Eigenvalue System

  • Chapter
Mechanics and Control

Abstract

In the application of the classical techniques of the calculus of variations to the nonlinear optimization problem, the nonlinear eigenvalue problem -λ • AU = f (U), where △ is an elliptic differential operator, is often encountered. A new numerical technique, using a finite-element-based algorithm, for finding the solution U(X) where XR n the eigenvalue λ, and the maximum of the corresponding cost functional J(U) where J(U)= f Ω F(U)dx \( f(U) = \frac{{\partial F(U)}}{{\partial U}} \) is presented. This algorithm is applicable to a class of problems for which the nonlinear function f (U) has specific properties. The algorithm is simple but fast and both convergence and uniqueness of the solution are demonstrated in several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Babuska and J.E. Osborn, “Estimates for the errors in eigenvalue and eigen-vector approximation by Galerkin methods, with particular attention to the case of multiple eigenvalues,” SIAM J. Num. Anal. Vol. 24, pp.1249–1276, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Bardos, J. M. Lasry and M. Schatzman, Bifurcation and Nonlinear Eigenvalue Problems. Springer- Verlag: New York, 1980.

    Book  MATH  Google Scholar 

  3. R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience Publishers: New York, Vol. 1, 1953.

    Google Scholar 

  4. I. Fried, “Accuracy of finite element eigenproblem,” Journal of Sound and Vibration. Vol. 18, pp. 289–295, 1971.

    Article  MATH  Google Scholar 

  5. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer-Verlag: New York, 1984.

    MATH  Google Scholar 

  6. K. M. Liu and E. L. Ortiz, “Numerical solution of ordinary and partial functional-differential eigenvalue problems with Tau method,” Computing Vol. 41, pp. 205–217, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Rektorys, The method of discretization in time and partial differential equations. D. Reidel Publishing Company: Boston, 1982.

    MATH  Google Scholar 

  8. G. Strang and G. J. Fix, An Analysis of the Finite Element Method. Prentice-Hall: Englewood Cliffs, 1973.

    MATH  Google Scholar 

  9. O. C. Zienkiewicz and K. Morgan, Finite Elements and Approximation. John Wiley and Sons: New York, 1983.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cheng, D.S., Stubberud, A.R. (1994). A Numerical Solution for the Nonlinear Eigenvalue System. In: Guttalu, R.S. (eds) Mechanics and Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2425-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2425-0_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6029-2

  • Online ISBN: 978-1-4615-2425-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics