Skip to main content

The Involvement of the Cell Cycle in Apoptosis

  • Chapter
The Cell Cycle

Abstract

The term apoptosis was proposed in 1972 to describe dying cells that undergo characteristic morphological changes that were distinctly different from necrosis (Kerr et al., 1972; reviewed in Wyllie et al., 1980). In necrosis, cells swell leading to rupture of plasma and organelle membranes, release of hydrolytic enzymes, and loss of organized structure. In contrast, apoptosis was recognized as reduction in cell size and therefore it was originally termed “shrinkage necrosis.” It was believed that apoptosis was involved in tissue homeo-stasis so the new name was intended to emphasize the normal balance between cell replication (mitosis) and cell death (apoptosis). The earliest morphological change observed in a cell dying by apoptosis is chromatin condensation to the periphery of the nucleus, followed by nuclear and cytoplasmic blebbing, cell shrinkage, and eventual loss of membrane integrity. Biochemically, the earliest event observed is DNA digestion in the internucleosome spacer region. These events occur late in the pathway of cell death, but understanding what regulates them will lead to an understanding of the upstream events that directly cause cell death (Figure 1). One frequently cited requirement for apoptosis is new protein synthesis, although the identity of the critical protein(s) is unknown. These proteins are frequently thought of as lethal, but results discussed below will present an argument that they may be normal cell cycle regulatory proteins, and that their expression leads to passage of a cell to a phase of the cell cycle at which they can undergo apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S.A., 1991, Growth factors and cancer, Science 254: 1146.

    Article  PubMed  CAS  Google Scholar 

  • Askew, D.S., Ashmun, R.A., Simmons, B.C., and Cleveland, J.L., 1991, Constitutive cmyc expression in an IL-3-dependent myeloid cell line suppresses cell cycle arrest and accelerates apoptosis, Oncogene 6: 1915.

    PubMed  CAS  Google Scholar 

  • Barry, M.A., Behnke, C.A., and Eastman, A., 1990, Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins and hyperthermie, Biochem. Pharmacol. 40: 2353.

    Article  PubMed  CAS  Google Scholar 

  • Barry, M.A. and Eastman, A., 1993, Identification of deoxyribonuclease II as an endonuclease involved in apoptosis, Arch. Biochem. Biophys. 300: 440.

    Article  PubMed  CAS  Google Scholar 

  • Barry, M.A. and Eastman, A., 1993, Identification of deoxyribonuclease II as an endonuclease involved in apoptosis, Arch. Biochem. Biophys. 300: 440.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, J.J. and Duke, R.C., 1984, Glucorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death, J. Immunol. 132: 38.

    PubMed  CAS  Google Scholar 

  • Demareq, C., Creswell, D., and Eastman, A. (1993). Involvement of p34cdc2 kinase in cisplatin-induced G2 arrest and apoptosis in Chinese hamster ovary cells, submitted.

    Google Scholar 

  • Eastman, A., 1987, The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes, Pharmac. Ther. 34: 155.

    Article  CAS  Google Scholar 

  • Eastman, A. and Barry, M.A., 1992, The origins of DNA breaks: a consequence of DNA damage, DNA repair or apoptosis, Cancer Invest. 10: 229.

    Article  PubMed  CAS  Google Scholar 

  • Eastman, A. and Barry, M.A., 1992, The origins of DNA breaks: a consequence of DNA damage, DNA repair or apoptosis, Cancer Invest. 10: 229.

    Article  PubMed  CAS  Google Scholar 

  • Eastman, A., Barry, M.A., Creswell, D., and Demareq, C., 1992, Cytotoxicity as a consequence of DNA damage, in: “DNA Repair Mechanisms,” V.A. Bohr, K. Wassermann, K.H. Kraemer, and J.H. Theysen, eds., Munksgaard, Copenhagen.

    Google Scholar 

  • Evan, G.I., Wyllie, A.H., Gilbert, C.S., Littlewood, T.D., Land, H., Brooks, M., Waters, C.M., Penn, L.Z., and Hancock, D.C., 1992, Induction of apoptosis in fibroblasts by c-mye protein, Cell 69: 119,

    Article  PubMed  CAS  Google Scholar 

  • Gillies, R.J., Martinez-Zaguilan, R., Martinez, G.M., Serrano, R., and Perona, R., 1990, Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiologic conditions, Proc. Natl. Acad. Sci. USA. 87: 7414.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein, D.J., Finbow, M.E., Andresson, T., McLean, P., Smith, K., Bubb, V., and Schlegel, R., 1991, Bovine papillomavirus E5 oncoprotein binds to the 16K component of vacuolar H+-ATPases, Nature 352: 347.

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R.D., and Korsmeyer, S.J., 1990, Bcl-2 is an inner mitochondria) membrane protein that blocks programmed cell death, Nature 348: 334.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, I., Clarke, P.R., Marcote, M.J., Karenti, E., and Draetta, G., 1993, Phosphorylation and activation of human cdc25-C by cdc2/cyclin B and its involvement in the self-amplification of MPF at mitosis, EMBO J. 12: 53.

    PubMed  CAS  Google Scholar 

  • Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., 1972, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics, Br. J. Cancer 26: 239.

    Article  PubMed  CAS  Google Scholar 

  • Madshus, L.H., 1988, Regulation of intracellular pH in eukaryotic cells, Biochem. J. 250: 1.

    PubMed  CAS  Google Scholar 

  • Maly, K., Uberall, F., Loferer, H., Doppler, W., Oberhuber, H., Groner, B., and Grunicke, H.H., 1989, Ha-ras activates the Na+/H+ antiporter by a protein kinase C-independent mechanism, J. Biol. Chein. 264: 1 1839.

    Google Scholar 

  • Miyashita, T. and Reed, J.C., 1992, Bcl-2 gene transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs, Cancer Res. 52: 5407.

    PubMed  CAS  Google Scholar 

  • Nikonova, L.V., Nelipovich, P.A., and Umansky, S.R., 1982, The involvement of nuclear nucleases in rat thymocyte DNA degradation after ‘y-irradiation, Biochim. Biophys. Acta 699: 281.

    Article  PubMed  CAS  Google Scholar 

  • Oberhammer, F., Bursch, W., Parzefall, W., Breit, P., Stadler, M., and Schulte-Hermann, R., 1991, Effects of transforming growth factor ß on cell death of cultured rat hepatocytes, Cancer Res. 51: 2478.

    PubMed  CAS  Google Scholar 

  • Rotin, D., Steele-Norwood, D., Grinstein, S., and Tannock, I., 1989, Requirement of the Na+/H+ exchanger for tumor growth., Cancer Res. 49: 205.

    PubMed  CAS  Google Scholar 

  • Sardet, C., Franchi, A., and Pouyssegur, J., 1989, Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter, Cell 56: 271.

    Article  PubMed  CAS  Google Scholar 

  • Sandet, C., Counillon, L., Franchi, A., and Pouyssegur, J., 1990, Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110 kD, Science 247: 723.

    Article  Google Scholar 

  • Schwartz, M.A., Lechene, C., and Ingber, D.E., 1991, Insoluble fibronectin activates the Na/H antiporter by clustering and immobilizing integrina501, independent of cell shape, Proc. Natl. Acad. Sci. USA. 88: 7849.

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Glynn, J.M., Guilbert, L.J., Cotter, T.G., Bissonette, R.P., and Green, D.R., 1992, Role for c-myc in activation-induced apoptotic cell death in T cell hybridomes, Science 257: 212.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, R.M., Katsumata, M., Miyashita, T., Louie, D., Greene, M.I., and Reed, J.C., 1992, Inhibition of thymocyte apoptosis and negative selection in bcl-2 transgenic mice, Proc. Natl. Acad. Sci. USA. 89: 7003.

    Article  PubMed  CAS  Google Scholar 

  • Sorenson, C.M. and Eastman, A., 1988a, Influence of cis-diamminedichloroplatinum (N) on DNA synthesis and cell cycle progression in excision repair proficient and deficient Chinese hamster ovary cells, Cancer Res. 48: 6703.

    PubMed  CAS  Google Scholar 

  • Sorenson, C.M. and Eastman, A., 1988b, Mechanism of cis-diamminedichloroplatinum (II)-induced cytotoxicity: role of G2 arrest and DNA double-strand breaks, Cancer Res. 48: 4484.

    PubMed  CAS  Google Scholar 

  • Sorenson, C.M., Barry, M.A., and Eastman, A., 1990, Analysis of events associated with cell cycle arrest at G2 and cell death induced by cisplatin, J. Nat. Cancer Inst. 82: 749.

    Article  PubMed  CAS  Google Scholar 

  • Swann, K. and Whitaker, M., 1985, Stimulation of the Na/H exchanger of sea urchin eggs by phorbol ester, Nature 314: 274.

    Article  PubMed  CAS  Google Scholar 

  • Ucker, D.S., Obermiller, P.S., Eckhart, W., Apgar, J.R., Berger, N.A., and Meyers, J., 1992, Genome digestion is a dispensable consequence of physiological cell death mediated by cytotoxic T lymphocytes, Mol. Cell. Biol. 12: 3060.

    PubMed  CAS  Google Scholar 

  • Vaux, D.L., Cory, S., and Adams, J.M., 1988, Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells, Nature 335: 440.

    Article  PubMed  CAS  Google Scholar 

  • Wurm, F.M., Gwinn, K.A., and Kingston, R.E., 1986, Inducible overproduction of the mouse c-myc protein in mammalian cells, Proc. Natl. Acad. Sci. USA. 83: 5414.

    Article  PubMed  CAS  Google Scholar 

  • Wyllie, A.H., Kerr, J.F.R., and Currie, A.R., 1980, Cell death: the significance of apoptosis, Int. Rev. Cytol. 68: 251.

    Article  PubMed  CAS  Google Scholar 

  • Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., and Oren, M., 1991, Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleuken-6, Nature 352: 345.

    Article  PubMed  CAS  Google Scholar 

  • Zachary, I. and Roxengurt, E., 1992, Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins and oncogenes, Cell 71: 891.

    Article  PubMed  CAS  Google Scholar 

  • Zakeri, Z.F., Quaglino, D., Latham, T., and Lockshin, R.A., 1993, Delayed internucleosomal DNA fragmentation in programmed cell death, FASEB J. 7: 470.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eastman, A., Barry, M.A., Demarcq, C. (1994). The Involvement of the Cell Cycle in Apoptosis. In: Hu, V.W. (eds) The Cell Cycle. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2421-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2421-2_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6027-8

  • Online ISBN: 978-1-4615-2421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics