Skip to main content

Positive and Negative Regulation of Cell Cycle Progression by Serine/Threonine Protein Phosphatases

  • Chapter
Book cover The Cell Cycle

Abstract

Reversible protein phosphorylation events play a key role in intracellular signal transduction pathways that regulate gene expression and cell proliferation. To analyze the involvement of protein phosphatases in these processes, we applied two different approaches. First, we used okadaic acid, a specific inhibitor of the two major serine/threonine protein phosphatases, type 1 (PP-1) and type 2A (PP-2A).1–3 Second, we microinjected subunits of PP-2A into living cells and analyzed the effects on gene expression.

to whom reprint request should be sent

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bialojan, and A. Takal. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Biochem. J. 256: 283 (1988).

    PubMed  CAS  Google Scholar 

  2. J. Hescheler, G. Mieskes, J.C. Rüegg, A. Takal, and W. Trautwein. Effects of a protein phosphatase inhibitor, okadaic acid, on membrane currents of isolated guinea-pig cardiac myocytes. Eur. J. Physiol. 412: 248 (1988).

    Article  CAS  Google Scholar 

  3. P. Cohen. The st ucture and regulation of proteinphosphatases. Ann. Rev. Biochem., 58: 453 (1989).

    Article  PubMed  CAS  Google Scholar 

  4. A. Schönthal. Okadaic acid: a valuable new tool for the study of signal transduction and cell cycle regulation? New Biol. 4: 16 (1992).

    PubMed  Google Scholar 

  5. M. Suganuma, H. Fujiki, H. Sugui, S. Yoshizwa, M. Hirota, M. Nakayasu, M. Ojika, K. Wakamatsu, and K. Yamada. Okadaic acid: an additional non-phorbol-12-O-tetradecanoate-13-acetate-type promoter. Proc. Natl. Acad. Sci. USA 85: 1768 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. F. Katoh, D.J. Fitzgerald, L. Giroldi, H. Fujiki, T. Sugimura, and H. Yamasaki. Okadaic acid and phorbol esters: comparative effects of these tumor promoters on cell transformation, intercellular communication nd differentiation in vitro. Jpn. J. Cancer Res. 81: 590 (1990).

    Article  PubMed  CAS  Google Scholar 

  7. K. Yamashita, H. Yasuda, J. Pines, K. Yasumoto, H. Nishitani, M. Ohsubo, T. Hunter, T. Sugimura, and T Nishimoto. Okadaic acid, a potent inhibitor of type I and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells. EMBO J. 9: 4331 (1990).

    Google Scholar 

  8. M.A. Felix, P. Cohen, and E. Karsenti. Cdc HI kinase is negatively regulated by a type 2A phosphatase in the Xenopus early embryonic cell cycle: evidence from the effect of okadaic acid. EMBO J. 9: 675 (1990).

    PubMed  CAS  Google Scholar 

  9. E.T. Kipreos, and J.Y.J. Wang. Differential phosphorylation of c-Abl in cell cycle determined by cdc2 kinase and phosphatase activity. Science 248: 217 (1990).

    Article  PubMed  CAS  Google Scholar 

  10. B. Lüscher, L. Brizuela, D. Beach, and R.N. Eisenman. A role for the p34cdc2 kinase and phosphatases in the regulation of phosphorylation and disassembly of lamin B2 during the cell cycle. EMBO J. 10: 865 (1991).

    PubMed  Google Scholar 

  11. R. Sakai, I. Ilceda, H. Kitani, H. Fujiki, F. Takaku, U. Rapp, T. Sugimura, and M. Nagao. Flat reversion by okadaic acid of raf and ret-II transformants. Proc. Natl. Acad. Sci. USA 86: 9946 (1989).

    Article  PubMed  CAS  Google Scholar 

  12. N.M. Dean, L.J. Mordan, K. Tse, S.L. Mooberry, and A.L. Boynton. Okadaic acid inhibits PDGF-induced proliferation and decreases PDGF receptor number in C3W10T1/2 mouse fibroblasts. Carcingenesis 12: 665 (1991).

    Article  CAS  Google Scholar 

  13. R. Boe, B.T. Gjertsen, O.K. Vintermyr, G. Houge, M. Lanotte, and S.O. Doskeland. The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp. Cell Res. 195: 237 (1991).

    Article  CAS  Google Scholar 

  14. L.J. Mordar, N.M. Dean, R.E. Honkanen, and A.L. Boynton. Okadaic acid: a reversible inhibitor of neoplastic transformation of mouse fibroblasts. Cancer Commun. 2: 237 (1990).

    Google Scholar 

  15. E. Rivedal, S.O. Mikalsen, and T. Saner. The non-phorbol ester tumor promoter okadaic acid does not promote morphological transformation or inhibitjunctional communication in hamster embryo cells. Biochem. Biophys. Res. Commun. 167: 1302 (1990).

    Article  PubMed  CAS  Google Scholar 

  16. P. Cohen, S. Klumpg, and D.L. Schelling. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEES Lett. 250: 596 (1989).

    Article  CAS  Google Scholar 

  17. S. Nishiwaki, H. Fujuki, M. Sugnuma, H. Furuya-Suguri, R. Matsushima, Y. Iida, M. Ojika, K. Yamada, D. Uemura, T. Yasunoto, F.J. Schmitz, and T. Sugimura. Structure-activity relationship within a series of okadaic acid derivatives. Carcinogenesis 11: 1837 (1990).

    Article  PubMed  CAS  Google Scholar 

  18. R.E. Honkanen, J. Zwiller, S.L. Daily, B.S. Khatra, M. Dukelow, and A.L. Boynton. Identification, purification, and characterization of a novel sedne/threonine protein phosphatase from bovine brain. J. Biol. Chem. 266: 6614 (1991).

    PubMed  CAS  Google Scholar 

  19. S. Shenolikar, and A.C. Navin. Protein phosphatases: Recent progress. Adv. Sec. Messgr. and Phos.phoprot. Res. 23: 1 (1991).

    Google Scholar 

  20. A. Schönthal, and J.R. Feramisco. Inhibition of histone HI kinase expression, retinoblastoma protein phosphorylation, and cell proliferation by the phosphatase inhibitor okadaic acid. Oncogen 8: 433 (1993).

    Google Scholar 

  21. Y. Ishida, Y. Furukawa, J.A. DeCapno, M. Salto, and J.D. Giffin. Treatment of myeloid leukemic cells with the phosphatase inhibitor okadaic acid induces cell cycle arrest at either GI/S or G2/M depending on the dose. J. Cell. Physiol. 150: 484 (1992).

    Article  PubMed  CAS  Google Scholar 

  22. D.D. Vandre, and V.L. Wills. Inhibition of mitosis by okadaic acid: possible involvement of a protein phosphatase 2A in the transition from metaphase to anaphase. J. Cell Sci. 101: 79 (1992).

    PubMed  CAS  Google Scholar 

  23. J.W. Ludlow. Selective ability of S-phase cell extracts to dephosphorylate SV40 large T antigen in vitro. Oncogen 7: 1011 (1992).

    Google Scholar 

  24. D.L. Brautigan, J. Sunwoo, J.-C. Labbe, A. Fernandez, and N.J.C. Lamb. Cell cycle oscillation of phosphatase inhibitor-2 in rat fibroblasts coincident with p34cdc2 restriction. Nature 344: 74 (1990).

    Article  PubMed  CAS  Google Scholar 

  25. H. Okhura, N. Kinoshita, S. Miyatiani, T. Toda, and M. Yanagida. The fission yeast dis2+ gene required for chromosome disjoining encodes one of two putative type 1 protein phosphatases. Cell 57: 997 (1989).

    Article  Google Scholar 

  26. R. Booher, and D. Beach. Involvement of a type 1 protein phosphatase encoded by bwsl+ in fission. Cell 57: 1009 (1989).

    Article  PubMed  CAS  Google Scholar 

  27. J.H. Doom, and N.R. Norris. The bimG gene of Aspergillus nidulans, required for completion of anaphase, encodes a homolog of mammalian phosphoprotein phospbatase 1. Cell 57: 987 (1989).

    Article  Google Scholar 

  28. A.M. Healy, S. Zolnierowicz, A.E. Stapleton, M. Goebl, A.A. DePaoli-Roach, and J.R. Pringle. CDC55, a Saccharomyces cerevisiae gene involved in cellular eisusuudsmorphogenesis: identification, characterization, and homology to the B subunit of mammalian type 2A protein phosphatase. Mol. Cell. Biol. 11: 5767 (1991).

    PubMed  CAS  Google Scholar 

  29. A. Sutton, D. Immanuel, and K.T. Arndt. The SIT4 protein phosphatase functions in late G1 for progression into S phase. Mol. Cell. Biol. 11: 2133 (1991).

    PubMed  CAS  Google Scholar 

  30. J. M. Almendral, D. Sommer, H. Macdonald-Bravo, J. Burckhardt, J. Peres, and R. Bravo. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8: 2140 (1988).

    PubMed  CAS  Google Scholar 

  31. L.F. Lau, and D. Nathans. Identification of a set of genes expressed during the GOGI transition of cultured mouse cells. EMBO J. 4: 3145 (1988).

    Google Scholar 

  32. J.T. Holt, T. Venkat-Gopal, A.D. Moulton, and A.W. Nienhuis. Inducible production of c-fos anti-sense RNA inhibits 3T3 proliferation. Proc. Natl. Acad. Sci. USA 83: 4794 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. K. Nishikura, and J.M. Murray. Antisense RNA of proto-oncogen c-fos blocks renewed growth of quiescent 3T3 cells. Mol. Cell. Biol. 7: 639 (1987).

    PubMed  CAS  Google Scholar 

  34. T. Hunter, and J. Pines. Cyclins and cancer. Cell 66: 1071 (1991).

    Google Scholar 

  35. T. Hunt. Maturation promoting factor, cyclin and the control of M-phase. Curr. Opin. Cell Biol. 1: 268 (1989).

    Article  PubMed  CAS  Google Scholar 

  36. K. Riabowol, G. Draetta, L Brizuela, D. Vandre, and D. Beach. The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells. Cell 57: 393 (1989).

    Article  PubMed  CAS  Google Scholar 

  37. F. Guard, U. Strausfeld, A. Fernandez, and N.J.C. Lamb. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169 (1991).

    Article  Google Scholar 

  38. F. Fang, and J.W. Newport. Evidence that the Gl-S and G2-M transitions are controlled by different cdc2 proteins in higher eukaryotic cells. Cell 66: 731 (1991).

    Google Scholar 

  39. A. Schönthal, Y. Tsukitani, and J.R. Feramisco. Transcriptional and posttranscriptional regulation of c-fos proto-oncogen expression by the tumor promoter okadaic acid. Oncogen 6: 423 (1991).

    Google Scholar 

  40. A.S. Alberts, T. Deng, A. Lin, J.L. Meinkoth, A. Schönthal, M.C. Mumby, M. Karin, and J.R. Feramisco. Protein phosphatase 2A potentiates activity of promoters containing AP-1-binding elements. Mol. Cell. Biol. 13: 2104 (1993).

    PubMed  CAS  Google Scholar 

  41. L.J. Ranson, and I.M. Verna. Nuclear proto-oncogenes fos and jun. Ann. Rev. Cell Biol. 6: 539 (1990).

    Article  Google Scholar 

  42. A. Schonthal, A.S. Alberts, J.A. Frost, and J.R. Feramisco. Differential regulation of jun family gene expression by the tumor promoter okadaic acid. New Biol. 3: 977 (1991).

    PubMed  CAS  Google Scholar 

  43. S.-J. Kim, R. Lafyatis, K.Y. Kim, P. Angel, H. Fujiki, M. Kann, M.B. Sporn, and A.B. Roberts. Regulation of collagenase gene expression by okadaic acid, an inhibitor of protein phosphatases. Cell Regulation 1: 269 (1990).

    PubMed  CAS  Google Scholar 

  44. U. C. Thevenin, S.-J. Kim, and J.H. Kehr1. Inhibition of protein phosphatases by okadaic acid induces AP-1 in human T cells. J. Biol. Chem. 266: 9363 (1991).

    PubMed  CAS  Google Scholar 

  45. X. Cao, R. Mahendran, G.R. Guy, and Y.H. Tan. Protein phosphatase inhibitors induce the sustained expression of the egr-1 gene and hyperphosphorylation of its gene product. J. Biol. Chem. 267: 12991 (1992).

    Google Scholar 

  46. J.L. Meinkoth, A. Alberts, and J.R. Feramisco. Construction of mammalian cell lines with indicator genes driven by regulated promoters. CIBA Found. Symp. 150: 47 (1990).

    PubMed  CAS  Google Scholar 

  47. R. Treisman. The SRE: A growth factor responsive transcriptional regulator. Semin. Cancer Biol. 1: 47 (1990).

    PubMed  CAS  Google Scholar 

  48. C.S. Hill, R. Marais, S. John, J. Wynne, S. Dalton, and R. Treisman. Functional analysis of growth factor-responsive transcription factor complex. Cell 73: 395 (1993).

    Article  PubMed  CAS  Google Scholar 

  49. R. Marais, J. Wynne, and R. Treisman. The SRF accessory protein Elk-i contains a growth factor-regulated transcriptional activation domain. Cell 73: 381 (1993).

    Google Scholar 

  50. M.H. Cobb, T.G. Boulton, and D.J. Robbins. Extracellular signal-regulated kinases: ERKs in progress. Cell Regulation 2: 965.

    Google Scholar 

  51. T.H. Lee, M.J. Solomon, M.C. Mumby, and M.W. Kirschner. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell 64: 415 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. M.J. Hubbard, and P. Cohen. On target with anew mechanism for the regulation of protein phosphorylation. Trends Biochem. Sci. 18: 172 (1993).

    Article  PubMed  CAS  Google Scholar 

  53. M.M. Harpold, R. M. Evans, M. Salditt-Georgieff, and J.E. Darnell. Production of mRNA in Chinese hamster cells: Relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell 17: 1025 (1979).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alberts, A.S., Schönthal, A. (1994). Positive and Negative Regulation of Cell Cycle Progression by Serine/Threonine Protein Phosphatases. In: Hu, V.W. (eds) The Cell Cycle. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2421-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2421-2_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6027-8

  • Online ISBN: 978-1-4615-2421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics