Skip to main content

Genotoxin-Induced Apoptosis: Implications for Carcinogenesis

  • Chapter
The Cell Cycle

Abstract

Apoptosis is thought to be a programmed form of cell death which, when balanced by cell proliferation, contributes to the regulation of tissue homeostasis (1). An imbalance between apoptosis and proliferation may be a factor in tumorigenesis. Apoptosis differs from necrosis both morphologically and biochemically. Necrotic cells exhibit an early loss of the ionic gradient across the cell membrane and non-cell cycle dependent random DNA degradation subsequent to release of lysosomal enzymes (1, 2). in contrast, cells dying by apoptosis maintain ionic gradients and characteristically exhibit internucleosomal DNA fragmentation (IDF) before the loss of cell membrane integrity occurs (3). IDF results from the activation of a nuclear, Ca2+/Mg2+ dependent or pH sensitive endonuclease, possibly DNase I or II (4). Apoptosis appears to be related to arrest of the cell cycle (3, 5, 6). Induction of apoptosis often requires a proliferative stimulus and can be thought of as process of abortive mitosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wyllie, A.H., Kerr, J.F.R. and Currie, A.R. Cell death: The significance of apoptosis. International Review of Cytology., 68: 251–306 (1980).

    Article  PubMed  CAS  Google Scholar 

  2. Kerr, J.F.R. and Harmon, B.V. Definition and incidence of apoptosis: An historical perspective. L.D. Tomei, and F.O. Cope, Ed., Apoptosis: The Molecular Basis of Cell death, p. 5–29. Plainview: Cold Spring Harbor Press, 1991.

    Google Scholar 

  3. Barry, M.A., Behnke, C.A. and Eastman, A. Activation of programmed cell death (apoptosis) by cisplatin, other anticancer drugs, toxins, and hyperthermie. Biochem. Pharm., 40: 2353–2362 (1990).

    Article  PubMed  CAS  Google Scholar 

  4. Eastman, A. and Barry, M. Platinum and other metal coordination compounds in cancer chemotherapy. Howell, S.B., Ed. Plenum Press, New York, 1991.

    Google Scholar 

  5. Muschel, R.J., Zhang, H.B., Iliakis, G. and McKenna, W.G. Cyclin B expression in hela cells during the G2 block induced by ionizing radiation. Cancer Res., 51: 5113–5117 (1991).

    PubMed  CAS  Google Scholar 

  6. O’Connor, P.M., Wassermann, K., Sarang, M., Magrath, I., Bohr, V.A. and Kohn, K.W. Relationship between DNA cross-links, cell cycle, and apoptosis in Burkett’s lymphoma cell lines differing in sensitivity to nitrogen mustard. Cancer Res., 51: 6550–6557 (1991).

    PubMed  Google Scholar 

  7. Corcoran, G.B. and Ray, S.D. Contemporary issues in Toxicology. The role of the nucleus and other compartments in toxic cell death produced by alkylating hepatotoxicants. Tox. and Appl. Pharm., 113: 167–183 (1992).

    Article  CAS  Google Scholar 

  8. Eastman, A. Activation of programmed cell death by anticancer agents: cisplatin as a model system. Cancer Cells., 2: 275–280 (1990).

    PubMed  CAS  Google Scholar 

  9. Kasten, M.B., Onyekewere, O., Sidransky, D., Vogelstein, B. and Craig, R.W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res., 51: 6304–6311 (1991).

    Google Scholar 

  10. Chromium, Nickel and Welding, IARC monographs on the evaluation of carcinogenic risks to humans 49, IARC, Lyon, France (1990).

    Google Scholar 

  11. Sugiyama, M., Patierno, S.R., Canton, O., and Costa, M. Characterization of DNA lesions induced by CaCrO4 in synchronous and asynchronous cultured mammalian cells. Mol. Pharm., 29: 606–613 (1986).

    CAS  Google Scholar 

  12. Xu, J., Wise, J.P., and Patierno, S.R. DNA damage induced by carcinogenic lead chromate particles in cultured mammalian cells. Mutat. Res., 280: 129–136 (1992).

    Article  PubMed  CAS  Google Scholar 

  13. Xu, J., Wise, J.P., and Patierno, S.R. DNA damage induced by carcinogenic lead chromate particles in cultured mammalian cells. Mutat. Res., 280: 129–136 (1992).

    Article  PubMed  CAS  Google Scholar 

  14. Wise, J.P., Leonard, J.C. and Patierno, S.R. Clastogenicity of lead chromate particles in hamster and human cells. Mutat Res 278: 69–79 (1992).

    Article  PubMed  CAS  Google Scholar 

  15. De Flora, S., Bagnasco, M., Serra, D. and Zanacchi, P. Genotoxicity of chromium compounds. A review. Mutat. Res., 238: 99–172 (1990).

    Article  PubMed  Google Scholar 

  16. Elias, Z., Poirot, O., Pezerat, H., Suquet, H., Schneider, O., Daniére, M.C., Terzetti, F., Baruthio, F., Fournier, M., and Cavelier, C. Cytotoxic and neoplastic transforming effects of industrial hexavalent chromium pigments in Syrian hamster embryo cells. Carcinogenesis, 10: 2043–2052 (1989).

    Article  PubMed  CAS  Google Scholar 

  17. Patierno, S.R., Banh, D. and Landolph, J.R. Transformation of C3H/10T1/2 mouse embryo cells to focus formation and anchorage independence by insoluble lead chromate but not soluble calcium chromate: relationship to mutagenesis and internalization of lead chromate particles. Cancer Res., 48: 5280–5288 (1988).

    PubMed  CAS  Google Scholar 

  18. Landolph, J.R. Neoplastic transformation of mammalian cells by carcinogenic metal compound: cellular and molecular mechanisms. Foulkes, E.C., Ed. Biological Effects of Heavy Metals, Vol 2. CRC Press Inc, Boca Raton, Florida, 1990, p 1–18.

    Google Scholar 

  19. Lehmann, A.R. and Stevens, S. A rapid procedure for measurement of DNA repair in human fibroblasts and for complementation analysis of xeroderma pigmentosum cells. Mutat. Res., 69: 177–190 (1980).

    Article  PubMed  CAS  Google Scholar 

  20. Martikainen, P., Kyprianou, N., Tucker, R.W., Isaacs, J.T. Programmed cell death of non-proliferating androgen-independent prostativ cancer cells. Cancer Res., 51: 4693–4700 (1991).

    PubMed  CAS  Google Scholar 

  21. Obi, F.O., Ryan, A.J. and Billett, M.A. Preferential binding of the carcinogen benzol[a]pyrone to DNA in active chromatin and the nuclear matrix. Carcinogenesis, 7: 907–913 (1986).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Patierno, S.R., Blankenship, L.J., Wise, J.P., Xu, J., Bridgewater, L.C., Manning, F.C.R. (1994). Genotoxin-Induced Apoptosis: Implications for Carcinogenesis. In: Hu, V.W. (eds) The Cell Cycle. GWUMC Department of Biochemistry Annual Spring Symposia. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2421-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2421-2_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6027-8

  • Online ISBN: 978-1-4615-2421-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics