Tear Film — Contact Lens Interactions

  • Donald R. Korb
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 350)

Abstract

The relationship between the precorneal tear film and contact lenses has been recognized since the conception of contact lenses by da Vinci, who identified the optical effect of tears in a contact lens system.1 With the initiation of the modern age of contact lenses by Feinbloom in 19362 and Mullen in 1938,3 an insertion solution was required to fill the vaulted and sealed space between the posterior lens surface and the cornea. Since no significant interchange of fresh tears to the retro-lens space occurred, pH, osmolarity, and buffering agents of the insertion solutions were manipulated in unsuccessful attempts to eliminate corneal edema and to increase wearing time.4 In 1943, Bier introduced fenestration, allowing the exchange of tear fluid into the retro-lens space and reducing edema, with a concurrent increase in wearing time.5

Keywords

Dioxide Corn Hydrate Dehydration Histamine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. da Vinci. Codex of the Eye, Manuscript D (circa 1508). For translation and illustrations, see H.W, Hofstetter and R. Graham, Leonardo and contact lenses, Amer. J. Optom. 30(l):41–44 (1953).Google Scholar
  2. 2.
    W. Feinhloom, A plastic contact lens, in: “Transcript of 15th Annual American Academy of Optometry Meeting,” 10:37–44, Chicago (1936).Google Scholar
  3. 3.
    J.E. Mullen. “Contact Lens,” U. S. Patent 2,237,744 (1938).Google Scholar
  4. 4.
    L. Lester Beacher. “Contact Lens Technique,” Third ed., pp. 92–105, New York Contact Lens Research Laboratories, New York (1944).Google Scholar
  5. 5.
    N. Bier. “Method for Contact Lens Fenestration,” U.K. Patent 592,055 (1943).Google Scholar
  6. 6.
    M.W. Nugent, The corneal lens, a preliminary report, Ann. West. Med. Surg. 2(6):241 (1948).Google Scholar
  7. 7.
    R. Graham R, Corneal lenses—a supplementary report, Amer. J. Oplom and Arch. Amer. Acad. Optom. 29(3): 137 (1952).CrossRefGoogle Scholar
  8. 8.
    R.W. Lester, Fluorescein and contact lenses, Contacto 2(4):91–95 (1958).Google Scholar
  9. 9.
    N.G. Gaylord. “Method for Correcting Visual Defects, Compositions and Articles of Manufacture Useful Therein,” U.S. Patent 4,120,570 (1978).Google Scholar
  10. 10.
    O. Wichterle and D. Lim, Hydrophilic gels for biological uses, Nature (Lond) 185(4706): 117 (1960).CrossRefGoogle Scholar
  11. 11.
    E. Wolff, The muco-cutaneous junction of the lid-margin and the distribution of the tear fluid, Trans. Opthalmol. Soc. U.K. 66:291–308 (1946).Google Scholar
  12. 12.
    J.M. Tiffany, Tear film stability and contact lens wear, J. Br. Contact Lens. Assoc. 11(Meeting Suppl.):35–38 (1988).Google Scholar
  13. 13.
    N. Ehlers, The precorneal film—biomicroscopical, histological and chemical investigations, Acta Ophthal. (Suppl.) 81:5–186 (1965).Google Scholar
  14. 14.
    M.R. Allansmith, How the cornea defends itself, Trans. Ophthal. Soc. U.K. 98:361–362 (1978).Google Scholar
  15. 15.
    S. Mishima and D.M. Maurice, The oily layer of the tear film and evaporation from the corneal surface, Exp. Eye Res. 1:39–45 (1961).PubMedCrossRefGoogle Scholar
  16. 16.
    F.J. Holly and M.A. Lemp, Tear physiology and dry eyes, Surv. Ophthalmol. 22:69–87 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    F.J. Holly and M.A. Lemp, Surface chemistry of the tearfilm; implications for dry eye syndromes, contact lenses, and ophthalmic polymers, C.L. Soc. of Am. J. 5(1):12–19 (1971).Google Scholar
  18. 18.
    M.D. Sarver, J.L. Nelson, and K.A. Poise, Peripheral corneal staining accompanying contact. lens wear, J. Am. Optom. Assoc. 40(3):310–313 (1969).PubMedGoogle Scholar
  19. 19.
    D.R. Korb and J.E.Korb, A study of 3 and 9 o’clock staining after unilateral lens removal, J. Am. Oplom. Assoc. 41:233–236 (1970).Google Scholar
  20. 20.
    M.B. Abelson, N.A. Sotter, et al., Histamine in human tears, Amer. J. Ophthal. 83:417–418 (1977).PubMedGoogle Scholar
  21. 21.
    J.P. Guillon, Tear film photography and contact lens wear, J. Brit. C.E. Assoc. 5:84–87 (1982).CrossRefGoogle Scholar
  22. 22.
    G. Young and N. Efron, Characteristics of the pre-lens tear films during hydrogel contact lens wear, Ophthalmic Physiol. Opt. 11:53–58 (1991).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Holden, et al., The effect of secondary curve liftoff on peripheral corneal desiccation, Am. J. Optom. Physiol. Opt. 64:108P (1987).Google Scholar
  24. 24.
    J.E. McDonald and S. Brubaker, Meniscus-induced thinning of tear films, Am. J. Ophthal. 72(1): 139–146 (1971).PubMedGoogle Scholar
  25. 25.
    D.R. Korb and J.K. Korb, A new concept in contact lens design: Parts 1 and 2, J. Am. Optom. Assoc. 41:1–12 (1970).Google Scholar
  26. 26.
    L.N. Kline and T.J. DeLuca, Pitting stain with soft contact lenses—Hydrocurve thin series, J. Am. Optom. Assoc. 48:372–376 (1977).PubMedGoogle Scholar
  27. 27.
    B.A. Holden, D.F. Sweeney and R.G. Seger, Epithelial erosions caused by thin high water content lenses, Clin. Exp. Optom. 69:103–107 (1986).Google Scholar
  28. 28.
    L.S. Mengher, et al., Non-invasive assessment of tear film stability, in: “The Preocular Tear Film in Health, Disease, and Contact Lens Wear,” F J. Holly, ed., pp. 64–75, Dry Eye Institute, Lubbock, TX (1986).Google Scholar
  29. 29.
    G.T. Timberlake, M.G. Doane and J.H. Bertera, Short-term, low-contrast visual acuity reduction associated with in vivo contact lens drying, Optom. & Vis. Sci. 69(10):755–760 (1992).CrossRefGoogle Scholar
  30. 30.
    G.E. Lowther, R.B. Miller and R.M. Hill, Tear concentrations of sodium and potassium during adaptation to contact lenses: I. Sodium observations, Am. J. Optom. Arch. Am. Acad. Optom. 47:266–275 (1970).PubMedGoogle Scholar
  31. 31.
    R.L. Farris, Tear analysis in contact lens wearers, CLAO J. 12:106–111 (1986).PubMedGoogle Scholar
  32. 32.
    A. Tomlinson and T.H. Cedarslaff, Tear evaporation from the human eye: The effects of contact lens wear, J. Br. C.L. Assoc. 5:141–150 (1982).CrossRefGoogle Scholar
  33. 33.
    J.V. Greiner and M.R. Allansmith, Effect of contact lens wear on the conjunctival mucous system, Ophthalmology 88:821–832 (1981).PubMedGoogle Scholar
  34. 34.
    D.J. Browning and G.N. Foulks, Tear pH in health, disease, and contact lens wear, in: “The Preocular Tear Film in Health, Disease, and Contact Lens Wear, F.J. Holly ed., pp. 954–965, Dry Eye Institute, Lubbock, TX (1986).Google Scholar
  35. 35.
    M. Sarver, et al., Wettability of some gas-permeable hard contact lenses, Int. C.L. Clin. 11:479–490 (1984).Google Scholar
  36. 36.
    W.J. Benjamin, M.G. Piccolo and H.A. Toubiana, Wettability: A blink by blink account. Int. C.L. Clin. 11:492–498 (1984).Google Scholar
  37. 37.
    F.J. Holly, Tear film physiology in contact lens wear: II. Contact lens — tear film interactions, Am. J. Optom. Physiol. 58:331 (1981).CrossRefGoogle Scholar
  38. 38.
    S. Mishima and D.M. Maurice, The oily layer of the tear film and evaporation from the corneal surface, Exp. Eye Res. 1:39–45 (1961).PubMedCrossRefGoogle Scholar
  39. 39.
    A. Tomlinson, Complications of Contact Lens Wear, pp. 178, Mosby-Year Book, Inc., St. Louis, (1992).Google Scholar
  40. 40.
    R.G. Linton, D.H. Curnow and W.J. Riley, The Meibomian glands. An investigation into the secretion and some aspects of the physiology, Br. J. Ophthalmol. 45:718 (1961).PubMedCrossRefGoogle Scholar
  41. 41.
    D.A. Benedetto, T.E. Clinch and P.R. Laibson, In vivo observation of tear dynamics using fluorophotometry, Arch. Ophthalmol. 102:410–412 (1984).PubMedCrossRefGoogle Scholar
  42. 42.
    D.R. Korb, et al, Meibomian gland secretion as a function of blinking, Invest. Ophth. Vis. Sci. (ARVO Suppl.) 34(4): 1473 (1993).Google Scholar
  43. 43.
    D.R. Korb, et al., Meibomian gland secretion as a function of blinking, (Submitted 1993).Google Scholar
  44. 44.
    G.R. Trees and A. Tomlinson, Effect of artificial tear solutions and saline on tear film evaporation, Optom. Vis. Sci. 67:886–890 (1990).PubMedCrossRefGoogle Scholar
  45. 45.
    G. Andrasko and J.P. Schoessler, The effect of humidity on the dehydration of soft contact lenses on the eye Int. C.L. Clin. 7(5):30–32 (1980)Google Scholar
  46. 46.
    V.M. Finnemore, et al, The effect of 100% humidity on contact lens symptoms, In preparation.Google Scholar
  47. 47.
    D.R. Korb, et al, The effect of 100% humidity on lipid layer thickness. In preparation.Google Scholar
  48. 48.
    D.R. Korb, et al, The effect of 100% humidity on the prelens lipid layer for rigid gas permeable and hydrogel contact lenses, In preparation.Google Scholar
  49. 49.
    M.J. Refojo, The tear film and contact lenses: the effect of water evaporation from the ocular surface, Simposio del Societa Optalmologica Italiana, Rome (1984).Google Scholar
  50. 50.
    D.R. Korb and J.V. Greiner, Increase in tear film lipid layer thickness following treatment of meibomian gland dysfunction, in: “Lacrimal Gland, Tear Film and Dry Eye Syndromes: Basic Science and Clinical Relevance,” D. Sullivan et al., eds., Plenum Press, New York (in press 1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Donald R. Korb
    • 1
  1. 1.Korb AssociatesBostonUSA

Personalised recommendations