Skip to main content

Part of the book series: Advances in Computer Vision and Machine Intelligence ((ACVM))

  • 105 Accesses

Abstract

This chapter introduces a first class of hierarchical systems: the simplest way to assemble a hierarchy is to link identical modules, thus giving rise to homo- geneous systems. Among the possible topologies that fit into this description are the following families: snowflakes (simple and dense), stars (partial and full), trees (regular, half- and full-ringed, hypertrees, multitrees, flip trees), hypernets, and pyramids (bin, quad, generic). Each family will be analyzed in detail. The analysis will be focused on topological aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. N. Bhuyan, Q. Yang, and D. P. Agrawal, Performance of multiprocessor interconnection network, Computer 22 (2), 25–36 (1989).

    Article  Google Scholar 

  2. D. A. Reed and H. D. Schwetman, Cost-performance bounds for multimicrocomputer networks, IEEE Trans. Comput. C-32 (1), 83–95 (1983).

    Article  Google Scholar 

  3. R. A. Finkel and M. H. Solomon, Processor interconnection strategies, IEEE Trans. Comput. C-29 (5), 360–371 (1980).

    Article  Google Scholar 

  4. J. R. Goodman and S. H. Sequin, Hypertree: a multiprocessor interconnection topology, IEEE Trans. Comput. C-30 (12), 923–933 (1981).

    Article  Google Scholar 

  5. B. W. Arden and H. Lee, A regular network for multicomputer systems, IEEE Trans. Comput. C-31 (1), 60–69 (1982).

    Article  Google Scholar 

  6. F. J. Meyer and D. K. Pradhan, Flip-trees: fault tolerant graphs with wide containers, IEEE Trans. Comput. C-37 (4), 472–478 (1988).

    Article  Google Scholar 

  7. K. Hwang and J. Ghosh, Hypernet: a communication-efficient architecture for constructing massively parallel computers, IEEE Trans. Comput. C-36 (12), 1450–1466 (1987).

    Article  Google Scholar 

  8. F. Devos, A. Merigot, and B. Zadovique, Integration d’un processeur cellulaire pour une architecture pyramidale de traitement d’image, Rev. Phys. Appl. 20, 23–27 (1985).

    Article  Google Scholar 

  9. V. Cantoni, M. Ferretti, S. Levialdi, and R. Stefanelli, PAPIA: pyramidal architecture for parallel image analysis, Proc. 7th Symp. Computer Arithmetic, Urbana II, 1985, pp. 237–242.

    Google Scholar 

  10. V. P. Nelson, Fault-tolerant computing: fundamental concepts, Computer 23 (7), 19–25 (1990).

    Article  Google Scholar 

  11. C. R. Lang, The extension of object-oriented languages to a homogeneous concurrent architecture, TR 5014, Computer Science Dept., California Institute of Technology, Pasadena (1982).

    Google Scholar 

  12. D. P. Bhandarkar, Analysis of memory interference in multiprocessors, IEEE Trans. Comput. C-24, 897–908 (1975).

    Article  Google Scholar 

  13. J. P. Hayes, A graph model for fault tolerant computing systems, IEEE Trans. Comput. C-25 (9), 875–883 (1976).

    Article  MathSciNet  Google Scholar 

  14. C. L. Kwan and S. Toida, An optimal fault tolerant realization of symmetrical hierarchical tree systems, Networks 12, 231–239 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  15. C. S. Raghiavendra, A. Avizienis, and M. Ercegovac, Fault tolerance in binary tree architectures, IEEE Trans. Comput. C-33 (6), 568–572 (1984).

    Article  Google Scholar 

  16. M. B. Lowrie and W. K. Fuchs, Reconfigurable tree architectures using sub-tree oriented fault tolerance, IEEE Trans. Comput. C-36 (10), 1172–1182 (1987).

    Article  Google Scholar 

  17. C. H. Sequin, Single chip computers, the new VLSI building blocks, Proc. VLSI Conf., California Institute of Technology, Pasadena (1979).

    Google Scholar 

  18. D. P. Agrawal and V. K. Janakiram, Evaluating the performance of multicomputer configurations, Computer 19 (5), 23–37 (1986).

    Google Scholar 

  19. V. Cantoni and S. Levialdi (eds.), Pyramidal Systems for Computer Vision ,Springer-Verlag, Berlin (1986).

    MATH  Google Scholar 

  20. A. Rosenfeld (ed.), Multiresolution Image Processing ,Springer-Verlag, Berlin (1984).

    MATH  Google Scholar 

  21. J. R. Amstrong and F. G. Gray, Fault diagnosis in a boolean n-cube array of microprocessors, IEEE Trans. Comput. C-30 (8), 587–590 (1981).

    Article  Google Scholar 

  22. V. Cantoni, M. Ferretti, and L. Lombardi, A comparison of homogeneous hierarchical interconnection structures, Proc. IEEE 79 (4), 416–428 (1991).

    Article  Google Scholar 

  23. J. D. Ullman, Computational Aspects of VLSI ,Computer Science Press, Rockville, MD (1984).

    MATH  Google Scholar 

  24. C. D. Thompson, A complexity theory for VLSI, Ph.D. dissertation, Carnegie-Mellon Univ., Dept. Computer Science (1980).

    Google Scholar 

  25. D. Gordon, Efficient embedding of binary trees in VLSI arrays, IEEE Trans. Comput. C-36 (9), 1009–1018 (1987).

    Article  Google Scholar 

  26. H. Y. Youn and A. D. Singh, On implementing large binary tree architectures in VLSI and WSI, IEEE Trans. Comput. 38 (4), 526–537 (1989).

    Article  Google Scholar 

  27. N. Ahuja, Efficient planar embedding of trees for VLSI layou, Proc. 7th Int. Conf. Pattern Recognition, Montreal, 1984, pp. 460–464.

    Google Scholar 

  28. D. L. Milgram and A. Rosenfeld, Array automata and array grammars, Proc. IFIP Congress 1971, pp. 166–173, North-Holland, Amsterdam (1971).

    Google Scholar 

  29. T. A. Ottman, A. L. Rosenberg, and L. J. Stockmeyer, A dictionary machine (for VLSI), IEEE Trans. Comput. C-31 (9), 892–898 (1982).

    Article  Google Scholar 

  30. H. Samet, The quadtree and related hierarchical data structures, Comput. Surv. 16, 187–260 (1984).

    Article  MathSciNet  Google Scholar 

  31. R. J. Swan, S. H. Fuller, and D. P. Siewiorek, Cm*-a modular multiprocessor, Proc. AFIPS Nat. Comp. Conf., 1977, pp. 637–663.

    Google Scholar 

  32. E. Appiani, G. Barbagelata, F. Cavagnero, B. Conterno, and R. Manara, EMMA2, an industry developed hierarchical multiprocessor for very high performance signal processing applications, Proc. 1st Int. Conf. Supercomputing Systems, St. Petersburg, FL, 1985.

    Google Scholar 

  33. D. W. Shaw, Organization and operation of a massively parallel machine, in Computers and Technology (G. Rabat, ed.), North-Holland, Amsterdam (1986).

    Google Scholar 

  34. H. A. H. Ibrahim, J. R. Kender, and D. E. Shaw, On the application of massively parallel SIMD tree machines to certain intermediate-level vision tasks, Comput. Vision, Graphics Image Process. 36, 53–75 (1986).

    Article  Google Scholar 

  35. M. Sharma, N. Ahuja, and J. H. Patel, An architecture for a large scale multiprocessor vision system, in Parallel Computer Vision (L. Uhr, ed.), pp. 87–105, Academic Press New York (1987).

    Google Scholar 

  36. S. J. Stolfo and D. P. Miranker, The DADO production system machine, J. Parallel Distributed Comput. 3 (2), 269–296 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cantoni, V., Ferretti, M. (1994). Hierarchical Homogeneous Topologies. In: Pyramidal Architectures for Computer Vision. Advances in Computer Vision and Machine Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2413-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2413-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6023-0

  • Online ISBN: 978-1-4615-2413-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics