Skip to main content

Hierarchical Strategies in Computer Vision Systems

  • Chapter
Pyramidal Architectures for Computer Vision

Abstract

In order to achieve the high performance that real applications require, correct computation on the relevant image data at the right time is essential. Following the studies on vision and perception in humans, two phases can be distin- guished: (1) a preattentive phase, in which the visual system is only dedicated to the detection of events and regions of interest within its wide field of view, and (2) an attentive phase, in which an extensive analysis of a restricted amount of data is performed. Correspondingly, an equivalent computational paradigm will be introduced in order to reduce the huge amount of raw data transduced by a standard artificial vision sensor. Such a paradigm provides for the use of variable-resolution grids, according to the image detail required for the task, thus obtaining multiresolution systems with different-sized layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Fischler and O. Firschein, The Eyes, the Brain and the Computer ,Addison-Wesley, Reading, MA (1987).

    Google Scholar 

  2. L. Uhr, Layered ‘recognition cones’ networks that preprocess, classify, and describe, IEEE Trans. Comput. C-21 (7), 758–768 (1972).

    Article  Google Scholar 

  3. P. J. Burt, ‘Smart sensing’ in machine vision, in Machine Vision: Algorithms, Architectures and Systems (H. Freeman, ed.), pp. 1–30, Academic Press, San Diego, CA (1988).

    Google Scholar 

  4. H. Freeman, Machine vision approaches to automatic inspection, in Progress in Image Analysis and Processing. II (V. Cantoni, M. Ferretti, S. Levialdi, R. Negrini, and R. Stefanelli, eds.), pp. 601–615, World Scientific, Singapore (1992).

    Google Scholar 

  5. L. Uhr, Highly parallel, hierarchical, recognition cone perceptual structures, in Parallel Computer Vision (L. Uhr, ed.), pp. 249–287, Academic Press, London (1987).

    Google Scholar 

  6. J. P. Frisby, Seeing: Illusion, Brain and Mind ,Oxford University Press, Oxford (1980).

    Google Scholar 

  7. D. H. Hubel, Eye, Brain and Vision ,Scientific American Books, New York (1988).

    Google Scholar 

  8. F. A. Geldard, The Human Senses ,Wiley, New York (1972).

    Google Scholar 

  9. L. Maffei and L. Mecacci, La Visione: dalla Neurofisiologia alla Psicologia ,A. Mondadori, Milan (1979).

    Google Scholar 

  10. D. C. Van Essen, Functional Organization of the primate visual cortex, in Cerebral Cortex ,Vol. 3, Visual Cortex (A. Peters and E. G. Jones, eds.), pp. 259–329, Plenum Press, New York (1985).

    Google Scholar 

  11. M. Mishkin, L. G. Ungerleider, and K. A. Macko, Objective vision and spatial vision: two cortical pathways, Trends Neurosci. 6, 329–342 (1983).

    Article  Google Scholar 

  12. P. J. Burt, C. H. Anderson, J. O. Sinniger, and G. van der Wal, A pipeline pyramid machine, in Pyramidal Systems for Computer Vision (V. Cantoni and S. Levialdi, eds.), pp. 133–152, Springer-Verlag, Berlin (1986).

    Chapter  Google Scholar 

  13. D. Marr, Vision ,Freeman, San Francisco (1982).

    Google Scholar 

  14. B. Julesz, Early vision, focal attention, and neural nets, in Neural Networks: Theory and Applications (R. J. Mammone and Y. Zeevi, eds.), pp. 209–216, Academic Press, San Diego, CA (1991).

    Google Scholar 

  15. R. Dodge, Five types of eyes movements in the horizontal plane of the field of regard, Am. J. Physiol. 8, 307–329 (1903).

    Google Scholar 

  16. C. Rashbass, The relationship between saccadic and smooth tracking eye movements, J. Physiol. 159, 326–338 (1961).

    Google Scholar 

  17. D. A. Robinson, Control of eye movements, in Handbook of Physiology ,Section I, The Nervous System (V.B. Brooks, ed.), Vol II, pert. 2, pp. 1275–1320, American Physiological Society, Bethesda, MD (1981).

    Google Scholar 

  18. D. Sagi and B. Julesz, “Where” and “what” in vision, Science ,228, 1217–1219 (1985).

    Article  Google Scholar 

  19. Th. Wertheim, Peripheral visual acuity, Am. J. Optom. Physiol. Optics 57, 915–924 (1980) [English translation of the original paper published in Z. Psychol. Physiol. Sinnensorg 7, 172–187 (1891)].

    Article  Google Scholar 

  20. E. L. Schwartz, Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding, Vision Res. 20, 645 (1980).

    Article  Google Scholar 

  21. P. J. Burt, Attention mechanisms for vision in a dynamic world, Proc. 11th Int. Conf. on Pattern Recognition, Rome, I, pp. 977–987 (1988).

    Google Scholar 

  22. C. H. Meyer, A. G. Lasker, and D. A. Robinson, The upper limit of human smooth pursuit velocity, Vision Res. 25, 561–563 (1985).

    Article  Google Scholar 

  23. D. A. Robinson, Vestibular and optokinetic symbiosis, an example of explaining by modelling, in Control of Gaze by Brain Stem Neurons (R. Baker and A. Berthoz, eds.), pp. 49–58, Elsevier/North-Holland, Amsterdam (1977).

    Google Scholar 

  24. A. Buizza and R. Schmid, Visual-vestibular interaction in the control of eye movements: mathematical modelling and computer simulation, Biol. Cybernet. 47, 203–211 (1982).

    Article  Google Scholar 

  25. W. A. MacKay and J. T. Murphy, Cerebellar modulation of reflex gains, Prog. Neurobiol. 13, 361–417 (1979).

    Article  Google Scholar 

  26. J. Dichgans and Th. Brandt, Visual-vestibular interaction: effects on self-motion perception and postural control, in Handbook of Sensory Physiology ,Vol. VIII, Perception (R. Held, H. Leibowitz, and H. L. Teuber, eds.), pp. 755–804, Springer-Verlag, Berlin (1978).

    Google Scholar 

  27. A. L. Yarbus, Eye Movements and Vision ,Plenum Press, New York (1967).

    Google Scholar 

  28. D. Noton and L. Stark, Eye movements and visual perception, Sci. Am. 224 (6), 34–43 (1971).

    Google Scholar 

  29. H. Freeman, Shape description via the use of critical points, Pattern Recognition 10 (3), 159–166 (1978).

    Article  MATH  Google Scholar 

  30. S. L. Tanimoto and A. Klinger (eds.), Structured Computer Vision: Machine Perception Through Hierarchical Computation Structures ,Academic Press, New York (1980).

    Google Scholar 

  31. A. Rosenfeld (ed.), Multiresolution Image Processing ,Springer-Verlag, Berlin (1984).

    MATH  Google Scholar 

  32. C. R. Dyer, Multiscale image understanding, in Parallel Computer Vision (L. Uhr, ed.), pp. 171–213, Academic Press, Orlando, FL (1987).

    Google Scholar 

  33. H. Samet, Applications of Spatial Data Structures ,Addison-Wesley, Reading, MA (1991).

    Google Scholar 

  34. H. Samet, The Design and Analysis of Spatial Data Structures ,Addison-Wesley, Reading, MA (1991).

    Google Scholar 

  35. H. Samet, The quad-tree and related hierarchical data structures, ACM Comput. Surv. 16, 187–260 (1984).

    Article  MathSciNet  Google Scholar 

  36. A. Rosenfeld, Some techniques for image segmentation, in Pyramidal Systems for Computer Vision (V. Cantoni, and S. Levialdi, eds.), pp. 261–271, Springer-Verlag, Berlin (1986).

    Chapter  Google Scholar 

  37. Ph. Clermont and A. Merigot, Efficient parallel pyramidal primitives or image analysis, in Progress in Image Analysis and Processing. II (V. Cantoni, M. Ferretti, S. Levialdi, R. Negrini, and R. Stefanelli, eds.), pp. 544–550, Wold Scientific, Singapore (1992).

    Google Scholar 

  38. V. Cantoni, L. Cinque, C. Guerra, S. Levialdi, and L. Lombardi, Describing object by a multiresolution syntactic approach, Proc. 2nd Int. Conf. on Parallel Image Analysis, Ube, Japan, 1992.

    Google Scholar 

  39. P. J. Burt and E. H. Adelson, The Laplacian pyramid as a compact image code, IEEE Trans. Commun. COM-31 (4), 532–540 (1983).

    Article  Google Scholar 

  40. C. F. Neveu, C. Dyer, and R. T. Chin, Two-dimensional object recognition using multiresolution models, Comput. Vision, Graphics, Image Process. 34, 52–65 (1986).

    Article  Google Scholar 

  41. D. H. Ballard, Generalizing the Hough transform to detect arbitrary scapes, Pattern Recognition 13 (2), 111–122 (1981).

    Article  MATH  Google Scholar 

  42. K. S. Fu, Recent developments in pattern recognition, IEEE Trans. Comput. C-29 (10), 845–854 (1980).

    Article  Google Scholar 

  43. K. S. Fu, Hybrid approaches to pattern recognition, NATO ASI on Pattern Recognition: Theory and Applications (J. Kittler, K. S. Fu, and L. S. Pau, eds.), pp. 139–155, D. Reidel, Dordrecht (1982).

    Chapter  Google Scholar 

  44. N. Nilsson, Problem Solving Methods in Artificial Intelligence ,McGraw-Hill, New York (1971).

    Google Scholar 

  45. R. S. Michalsky, Pattern recognition as rule-guided inductive inference, IEEE Trans. Pattern Anal. Machine Intell. 2 (4), 349–361 (1980).

    Article  Google Scholar 

  46. W. H. Tsai and K. S. Fu, Attributed Grammar-a tool for combining syntactic and statistical approaches to pattern recognition, IEEE Trans. Syst., Man Cybernet. SMC-10 (12), 873–884 (1980).

    Google Scholar 

  47. S. L. Tanimoto, J. P. Crettez, and J. C. Simon, Alternative hierarchies for cellular logic, Proc. 7th Int. Conf. on Pattern Recognition, Montreal, Canada, 1984, pp. 236–239.

    Google Scholar 

  48. P. J. Burt, Tree and pyramid structures for coding hexagonally sampled binary images, Computer Graphics, Vision, Image Process. 14, 271–280 (1980).

    Article  Google Scholar 

  49. N. Ahuja, On approaches to polygonal decomposition for hierarchical image representation, Computer Graphics, Vision, Images Process. 24, 200–214 (1983).

    Article  Google Scholar 

  50. N. P. Hartman and S. L. Tanimoto, A hexagonal pyramid data structure or image processing, IEEE Trans. Syst., Man, Cybernet. SMC-14, 247–255 (1984).

    Article  Google Scholar 

  51. J. L. Crowley and A. C. Parker, A representation for shape based on peaks and ridges in the difference of low-pass transform, IEEE Trans. Pattern Anal. Machine Intell. 6 (2), 156–170 (1984).

    Article  Google Scholar 

  52. W. G. Kropatsch, A pyramid that grows by power of two, Pattern Recognition Lett. 3 (9), 315–322 (1985).

    Article  Google Scholar 

  53. S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Machine Intell. PAMI-11 (7), 674–693 (1989).

    Article  Google Scholar 

  54. E. H. Adelson, E. Simoncelli, and R. Hingorani, Orthogonal pyramid transforms for image coding, in Visual Communications and Image Processing. II, Vol. 845 ,pp. 50–58 (1987). SPIE.

    Google Scholar 

  55. N. Millard and C. Paul, Recursive quadrature mirror filters: criteria specifications and design methods, IEEE Trans. Acoust., Speech, Signal Process. ASSP-33 (4), 413–420 (1985).

    Google Scholar 

  56. W. M. Wells, Efficient synthesis of gaussian filters by cascaded uniform filters, IEEE Trans. Pattern Anal. Machine Intell. PAMI-8 (2), 234–239 (1986).

    Article  Google Scholar 

  57. J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda, Uniqueness of the Gaussian kernel for scale space filtering, IEEE Trans. Pattern Anal. Machine Intell. PAMI-8 (1), 26–33 (1986).

    Article  Google Scholar 

  58. A. L. Yuille and T. A. Poggio, Scaling theorems for zero crossings, IEEE Trans. Pattern Anal. Machine Intell. PAMI-8 (2), 15–25 (1986).

    Article  Google Scholar 

  59. D. Marr and E. C. Hildreth, Theory of edge detection, Proc. R. Soc. London B-207, 187–217 (1980).

    Article  Google Scholar 

  60. P. J. Burt, Smart sensing in a pyramid vision machine, Proc. IEEE 76 (8), 1006–1014 (1988).

    Article  Google Scholar 

  61. P. J. Burt and E. H. Adelson, A multi-resolution spline with application to image mosaics, ACM Trans. Graphics 2 (4), 217–236 (1983).

    Article  Google Scholar 

  62. A. R. Hanson and E. M. Riseman, Segmentation of natural scenes, in Computer Vision Systems (A. R. Hanson and E. M. Riseman, eds.), pp. 129–174, Academic Press, New York (1978).

    Google Scholar 

  63. J. L. Crowley and R. M. Stern, Fast computation of the difference of low pass transform, IEEE Trans. Pattern Anal. Machine Intell. 6 (2), 212–222 (1984).

    Article  MATH  Google Scholar 

  64. E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden, Pyramid methods in image processing, RCA Eng. Mag. 29 (6), (1984).

    Google Scholar 

  65. A. Rosenfeld and M. Thurston, Edge and curve detection for visual scene analysis, IEEE Trans. Comput. TC-20, 562–569 (1971).

    Article  Google Scholar 

  66. A. P. Witkin, Scale-space filtering, Proc. 7th Int. Joint Conf. IJCAI, 1983, pp. 1019–1021.

    Google Scholar 

  67. A. Haar, Aur theorie der orthogonalen functionensysteme, Math. Ann. 69, 331–371 (1910).

    Article  MathSciNet  MATH  Google Scholar 

  68. J. E. Shore, A two dimensional haar-like transform, NLR Report 7472 AD 755433 (1973).

    Google Scholar 

  69. L. Carrioli, A pyramidal Haar transform implementation, in Image Analysis and Process- ing (V. Cantoni, S. Levialdi, and G. Musso, eds.), pp. 99–108, Plenum Press, New York (1986).

    Chapter  Google Scholar 

  70. M. Ferretti, Overlapping in compact pyramids, in Pyramidal Systems for Computer Vision (V. Cantoni and S. Levialdi, eds.), pp. 238–251, Springer-Verlag, Berlin (1986).

    Google Scholar 

  71. M. D. Levine, Region analysis using a pyramid data structure, in Structural Computer Vision (S. L. Tanimoto and A. Klinger, eds.), pp. 57–100, Academic Press, New York (1980).

    Google Scholar 

  72. G. Granlund and J. Arvidsson, The GOP image computer, in Fundamentals in Computer Vision (O. Faugeras, ed.), pp. 443–458, Cambridge University Press, Cambridge (1983).

    Google Scholar 

  73. M. D. Kelly, Edge detection in pictures by computer using planning, in Machine Intelligence 6 (B. Meltzer and D. Michie, eds.), pp. 397–409, Edinburgh University Press, Edinburgh (1971).

    Google Scholar 

  74. P. J. Burt and G. van der Wal, An architecture for multi-resolution, focal, image analysis, Proc. 10th Int. Conf. on Pattern Recognition, Atlantic City, NJ, 1990, pp. 305–311.

    Google Scholar 

  75. C. H. Anderson, P. J. Burt, and G. van der Wal, Change detection and tracking using pyramid transform techniques, Proc. SPIE Conf. Intelligent Robots and Computer Vision, 1985, pp. 72–78.

    Google Scholar 

  76. V. Cantoni and S. Levialdi, Contour labelling by pyramidal processing, in Intermediate-level Image Processing (M. B. Duff, ed.), pp. 179–188, Academic Press, London (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cantoni, V., Ferretti, M. (1994). Hierarchical Strategies in Computer Vision Systems. In: Pyramidal Architectures for Computer Vision. Advances in Computer Vision and Machine Intelligence. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2413-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2413-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6023-0

  • Online ISBN: 978-1-4615-2413-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics