Hierarchical Architectures

  • Virginio Cantoni
  • Marco Ferretti
Part of the Advances in Computer Vision and Machine Intelligence book series (ACVM)


The theory of hierarchical modular systems (HMSs) has shown how a paltry number of hierarchical levels can massively increase the efficiency of very large systems. Several large natural systems have been identified as self-or- ganizing HMSs, including monetary systems, distribution of settlements on a territory, natural languages (hierarchy given by letters, syllables, words, predi- cates, clauses, sentences, and paragraphs), military hierarchies, etc. In this chapter, the theory of HMS is briefly introduced, a few examples are described, and hierarchical computer architectures are introduced within the framework of the HMSs.


Natural Language Processing Element Hierarchical Level Invariance Principle Hierarchical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Hewitt and H. Lieberman, Design issues in parallel architectures for artificial intelligence, MIT. A. I. Memo No. 750, pp. 1–14 (1983).Google Scholar
  2. 2.
    L. J. Siegel, H. J. Siegel, and P. H. Swain, Parallel algorithm performance measures, in Multicomputers and Image Processing (L. Uhr, ed.), pp. 241–252, Academic Press, New York (1982).Google Scholar
  3. 3.
    V. Cantoni and S. Levialdi, Matching the task to a computer architecture, Comput. Vision, Graphics Image Process. 22, 301–309 (1983).CrossRefGoogle Scholar
  4. 4.
    M. D. Kelly, Edge detection in pictures by computers using planning, in Machine Intelligence ,Vol. 6, pp. 397–409, Edinburgh University Press (1971).Google Scholar
  5. 5.
    S. L. Tanimoto and A. Klinger, Structured Computer Vision: Machine Perception through Hierarchical Computation Structures ,Academic Press, New York (1980).Google Scholar
  6. 6.
    E. R. Caianiello, Some remarks on organization and structures, Biol. Cybernet. 26, 151–168 (1977).MATHCrossRefGoogle Scholar
  7. 7.
    E. R. Caianiello, G. Scarpetta, and G. Simoncelli, A systematic study of monetary systems, Int. J. Gen. Syst. 8, 81–92 (1982).MATHCrossRefGoogle Scholar
  8. 8.
    E. R. Caianiello, M. Marinaro, G. Scarpetta, and G. Simoncelli, Structure and modularity in self-organizing complex systems, in Topics in the General theory of Structures (E. R. Caianiello and M. A. Aizerman, eds.), pp. 5–57, D. Reidel, Dordrecht (1987).CrossRefGoogle Scholar
  9. 9.
    E. R. Caianiello, A thermodynamical approach to hierarchical self-organizing systems, private communication, seminar delivered at HASA (1979).Google Scholar
  10. 10.
    J. D. Becker, Structure, justice, and efficiency, Proc. Workshop on Modelling Processing of Structural Change in Social Systems, Beiträge zur Sicherheitspolitik Nr. 3. Max-Planck-Ges., Max-Planck-Institut (1988).Google Scholar
  11. 11.
    J. C. Hentsch, La circulation des coupures qui constituent une monnaie, J. Soc. Statist. Paris 4, 279–286 (1973).Google Scholar
  12. 12.
    H. W. Singer, The “courbe des populations”. A parallel to Pareto’s law, Econ. J. 46, 254 (1936).CrossRefGoogle Scholar
  13. 13.
    G. R. Allen, The “courbe des populations”. A further analysis, Bull. Oxford Inst. Statist. 16, 179 (1954).Google Scholar
  14. 14.
    G. Scarpetta and G. Simoncelli, Self-organizing hierarchical modular systems, in WOPPLOT 86 -Parallel Processing: Logic, Organization and Technology (J. Becker and I. Eisele eds.), pp. 87–119, Springer-Verlag, Berlin (1987).Google Scholar
  15. 15.
    J. Becker, Structural aspects of organizing parallel processing machines, K. Ecker (Hrsg.), Berichte des Instituts fur Informatik der Universität Clasthal (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Virginio Cantoni
    • 1
  • Marco Ferretti
    • 1
  1. 1.University of PaviaPaviaItaly

Personalised recommendations