Protein Synthesis and Secretion as Seen by the Nascent Protein Chain

  • Arthur E. Johnson
  • Kathleen S. Crowley
  • Steven K. Shore
  • Gregory D. Reinhart


One of the features that distinguishes the ribosome from most other enzymes is the need to retain the product of each transpeptidation reaction, specifically the nascent or growing polypeptide chain, until the mRNA-dependent polymerization of amino acids is terminated by a stop codon. Since many proteins are more than 1000 amino acids in length, the space occupied by the nascent chain attached to the ribosome-bound peptidyl-tRNA can be substantial. The ribosome must therefore be designed to minimize the interference between the growing nascent chain and the molecular traffic associated with decoding and protein chain elongation (tRNA and elongation factors). The probable solution to this structural issue was provided by Malkin and Rich (1967) and by Blobel and Sabatini (1970), who found that the ribosome protected the C-terminal 40 or so amino acids of the nascent chain from proteolytic digestion. This suggested that the nascent chain was not exposed to the cytoplasm near the peptidyltransferase center, but instead left the ribosome far from its active site. This model was later supported by immunoelectron microscopy data that detected nascent chain folding outside the ribosome at the base of the large ribosomal subunit (Bernabeu and Lake, 1982) and by x-ray diffraction data that revealed a region of low electron density in the large ribosomal subunit that extended approximately from its base to the peptidyltransferase center located near the base of the central protuberance (Yonath et al., 1987).


Signal Sequence Endoplasmic Reticulum Membrane Signal Recognition Particle Large Ribosomal Subunit Endoplasmic Reticulum Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcala, J. R., Gratton, E., and Prendergast, F. G., 1987, Biophys. J. 51:587.PubMedCrossRefGoogle Scholar
  2. Andrews, D. W., Young, J. C., Mirels, L. F., and Czarnota, G. J., 1992, J. Biol. Chem. 267:7761.PubMedGoogle Scholar
  3. Bemabeu, C., and Lake, J. A., 1982, Proc. Natl. Acad. Sci. USA 79:3111.CrossRefGoogle Scholar
  4. Bemabeu, C., Tobin, E. M., Fowler, A., Zabin, I., and Lake, J. A., 1983, J. Biol. Chem. 96:1471.Google Scholar
  5. Blobel, G., and Dobberstein, B., 1975, J. Cell Biol. 67:835.PubMedCrossRefGoogle Scholar
  6. Blobel, G., and Sabatini, D., 1970, J. Cell Biol. 45:130.PubMedCrossRefGoogle Scholar
  7. Chattopadhyay, A., and London, E., 1987, Biochemistry 26:39.PubMedCrossRefGoogle Scholar
  8. Crowley, K. S., Reinhart, G. D., and Johnson, A. E., 1992, Submitted.Google Scholar
  9. Duffy, L. K., Gerber, L., Johnson, A. E., and Miller, D. L., 1981, Biochemistry 20:4663.PubMedCrossRefGoogle Scholar
  10. Engelman, D. M., and Steitz, T. A., 1981, Cell 23:411.PubMedCrossRefGoogle Scholar
  11. Görlich, D., Hartman, E., Prehn, S., and Rapoport, T. A., 1992, Nature 357:47.PubMedCrossRefGoogle Scholar
  12. Guerrier-Takada, C., Johnson, A. E., Miller, D. L., and Cole, P. E., 1981, J. Biol. Chem. 256:5840.PubMedGoogle Scholar
  13. High, S., and Dobberstein, B., 1991, J. Cell Biol. 113:229.PubMedCrossRefGoogle Scholar
  14. High, S., Görlich, D., Wiedmann, M., Rapaport, T. A., and Dobberstein, B., 1991, J. Cell Biol. 113:35.PubMedCrossRefGoogle Scholar
  15. Jameson, D. M., Gratton, E., and Hall, R. D., 1984, Appl. Spec. Rev. 20:55.CrossRefGoogle Scholar
  16. Johnson, A. E., and Cantor, C. R., 1980, J. Mol. Biol 138:273.PubMedCrossRefGoogle Scholar
  17. Johnson, A. E., Miller, D. L., and Cantor, C. R., 1978, Proc. Natl. Acad. Sci. USA 75:3075.PubMedCrossRefGoogle Scholar
  18. Johnson, A. E., and Slobin, L. I., 1980, Nucleic Acids Res 8:4185.PubMedCrossRefGoogle Scholar
  19. Johnson, A. E., Woodward, W. R., Herbert, E., and Menninger, J. R., 1976, Biochemistry 15:569.PubMedCrossRefGoogle Scholar
  20. Kellaris, K. V., Bowen, S., and Gilmore, R., 1991, J. Cell. Biol. 114:21.PubMedCrossRefGoogle Scholar
  21. Killian, J. A., Keller, R. C. A., Struyvé, M., de Croon, A. I. P. M., Tommassen, J. and de Kruijff, B., 1990, Biochemistry 29:8131.PubMedCrossRefGoogle Scholar
  22. Kinzy, T. G., Freeman, J. P., Johnson, A. E., and Merrick, W. C., 1992, J. Biol. Chem. 267:1623.PubMedGoogle Scholar
  23. Krieg, U. C., Johnson, A. E., and Walter, P., 1989, J. Cell. Biol. 109:2033.PubMedCrossRefGoogle Scholar
  24. Krieg, U. C., Walter, P., and Johnson, A. E., 1986, Proc. Natl. Acad. Sci. USA 83:8604.PubMedCrossRefGoogle Scholar
  25. Kurzchalia, T. V., Wiedmann, M., Girshovich, A. S., Bochkareva, E. S., Bielka, H., and Rapoport, T. A., 1986, Nature 320:634.PubMedCrossRefGoogle Scholar
  26. Malkin, L. I., and Rich, A., 1967, J. Mol,Biol 26:329.PubMedCrossRefGoogle Scholar
  27. McKnight, C. J., Rafalski, M., and Gierasch, L. M., 1991, Biochemistry, 30:6241.PubMedCrossRefGoogle Scholar
  28. Migliaccio, G., Nicchitta, C. V., and Blobel, G., 1992, J. Cell. Biol. 117:15.PubMedCrossRefGoogle Scholar
  29. Müsch, A., Weidmann, M., and Rapoport, T. A., 1992, Cell 69:343.PubMedCrossRefGoogle Scholar
  30. Nicchitta, C. V., and Blobel, G., 1990, Cell 60: 259.PubMedCrossRefGoogle Scholar
  31. Nunnari, J., and Walter, P., 1992, Curr. Opin. Cell Biol. 4:573.PubMedCrossRefGoogle Scholar
  32. Picking, W. D., Picking, W. L., Odom, O. W., and Hardesty, B., 1992, Biochemistry 31:2368.PubMedCrossRefGoogle Scholar
  33. Prehn, S., Herz, J., Hartmann, E., Kurzchalia, T. V., Frank, R., Roemisch, K., Dobberstein, B., and Rapoport, T. A., 1990, Eur. J. Biochem. 188:439.PubMedCrossRefGoogle Scholar
  34. Ryabova, L. A., Selivanova, O. M., Baranov, V. I., Vasiliev, V. D., and Spirin, A. S.,1988FEBS Lett. 226:255.PubMedCrossRefGoogle Scholar
  35. Sanders, S. L., and Schekman, R., 1992, J. Biol. Chem. 267:13791.PubMedGoogle Scholar
  36. Sanders, S. L., Whitfield, K. M., Vogel, J. P., Rose, M. D., and Schekman, R., 1992, Cell 69:353.PubMedCrossRefGoogle Scholar
  37. Simon, S. M., and Blobel, G., 1991, Cell 65:371.PubMedCrossRefGoogle Scholar
  38. Simon, S. M., and Blobel, G., 1992, Cell 69:677.PubMedCrossRefGoogle Scholar
  39. Shore, S. K., 1991, Ph. D. Dissertation, University of Oklahoma, Norman, OK.Google Scholar
  40. Thrift, R. N., Andrews, D. W., Walter, P., and Johnson, A. E., 1991, J. Cell. Biol. 112:809PubMedCrossRefGoogle Scholar
  41. von Heijne, G., and Blomberg, C., 1979, Eur. J. Biochem. 97:175.CrossRefGoogle Scholar
  42. Wagenknecht, T., Carazo, J. M., Radermacher, M., and Frank, J., 1989, Biophys. J. 55:455.PubMedCrossRefGoogle Scholar
  43. Walter, P., and Lingappa, V. R., 1986, Annu. Rev. Cell Biol. 2:499.PubMedCrossRefGoogle Scholar
  44. Wiedmann, M., Goerlich, D., Hartmann, E., Kurzchalia, T. V., and Rapoport, T. A., 1989, FEBS Lett. 257:263.PubMedCrossRefGoogle Scholar
  45. Wiedmann, M., Kurzchalia, T. V., Hartmann, E., and Rapoport, T. A., 1987, Nature 328:830.PubMedCrossRefGoogle Scholar
  46. Yonath, A., Leonard, K. R., and Wittmann, H. G., 1987, Science 236:813.PubMedCrossRefGoogle Scholar
  47. Zopf, D., Bernstein, H. D., Johnson, A. E., and Walter, P., 1990, EMBO J. 9:4511.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Arthur E. Johnson
    • 1
  • Kathleen S. Crowley
    • 1
  • Steven K. Shore
    • 1
  • Gregory D. Reinhart
    • 1
  1. 1.Department of Chemistry and BiochemistryUniversity of Oklahoma NormanUSA

Personalised recommendations