Extrinsic Factors in Ribosome Assembly

  • Jean-Hervé Alix


Total reconstitution, in vitro, of ACTIVE procaryotic 30s and 50s ribosomal subunits by self-assembly does not exclude the participation of extrinsic (non ribosomal) factors involved in ribosomal assembly in vivo,as already pointed out by Nierhaus (1991). The facts available at present in support of this idea are: the essentially different characteristics between in vitro and in vivo ribosome assembly, the occurence of post-translational modifications affecting several ribosomal proteins, the discovery of the rim genetic loci, and of other extraribosomal genetic determinants revealed as extragenic suppressors of mutations blocking ribosome assembly, and finally the possible role of the chaperone DnaK in ribosome biogenesis.


Ribosomal Protein Ribosomal Subunit Sedimentation Coefficient Permissive Temperature Ribosome Assembly 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alix, J.H.,1988, Post-translational methylations of ribosomal proteins, in: ‘Advances in Post-translational Modifications of Proteins and Aging. Advances in Experimental Medicine and Biology“, vol.231. V. Zappia, P. Galletti, R. Porta, F. Wold, eds. Plenum Press, pp. 371–385.Google Scholar
  2. Alix, J.H. and Guérin, M.F.,1992, submitted to Proc. Natl. Acad. Sci. USA.Google Scholar
  3. Bryant, R.E. and Sypherd, P.S., 1974, J. Bact. 117: 1082–1092.PubMedGoogle Scholar
  4. Bryant, R.E., Fujisawa, T. and Sypherd P.S., 1974, Biochemistry 13, 2110–2114PubMedCrossRefGoogle Scholar
  5. Björk, G.R.,1987, Modification of stable RNA, in: “Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology”. F.C. Neidhardt, J.L. Ingraham, K.B. Low, B. Magasanik, M. Schaechter and H.E. Umbarger, eds. American Society for Microbiology, pp. 719–731.Google Scholar
  6. Cabezón, T., Herzog, A., Petre, J., Yaguchi, M. and Bollen, A., 1977, J. Mol. Biol. 116: 361–374.PubMedCrossRefGoogle Scholar
  7. Dodd, J., Kolb, J.M. and Nomura, M. 1991, Biochimie 73: 757–767PubMedCrossRefGoogle Scholar
  8. Egebjerg, J., Leffers, H., Christensen, A., Andersen, H. and Garrett, R.A., 1987, J. Mol. Biol. 196: 125–136.PubMedCrossRefGoogle Scholar
  9. Finley, D., Bartel, B. and Varshaysky, A., 1989, Nature 338: 394–401.PubMedCrossRefGoogle Scholar
  10. Gaitanaris, G.A., Papavassiliou, A.G., Rubock, P. Silverstein, S.J. and Gottesman, M.E.,1990, Cell 61: 1013–1020 and 1992, Cell 70: 714.Google Scholar
  11. Garvin, R.T. and Gorini, L., 1975, Mol. Gen. Genet. 137: 73–78.PubMedGoogle Scholar
  12. Grogan, D.W. and Cronan,J.E., 1984, Mot. Gen. Genet. 196: 367–372.CrossRefGoogle Scholar
  13. Grossman, A.D., Taylor, W.E., Burton, Z.F., Burgess, R.R. and Gross, C.A.,1985, J. Mol. Biol. 186: 357–365.PubMedCrossRefGoogle Scholar
  14. Hansen, F.G., Hansen, E.B., Atlung, T., 1982, EMBO J. 1: 1043–1048.PubMedGoogle Scholar
  15. Hayes, F. and Hayes, D.H., 1971, Biochimie 53: 369–382.PubMedCrossRefGoogle Scholar
  16. Iggo, R., Picksley, S., Southgate, J., McPheat, J. and Lane, D.P., 1990, Nucleic Acids Res. 18: 5413–5417.PubMedCrossRefGoogle Scholar
  17. Isaksson, L.A. and Takata, R., 1978, Mol. Gen. Genet. 161: 9–14.PubMedCrossRefGoogle Scholar
  18. Itikawa, H., Fujita, H., Wada M., 1986, J. Biochem. 99: 1719–1724.PubMedGoogle Scholar
  19. Johnson, S.C., Watson, N. and Apirion, D., 1976, Mol. Gen. Genet. 147: 29–37.PubMedCrossRefGoogle Scholar
  20. Kalman, M., Murphy, H. and Cashel, M., 1991, The New Biologist 3: 886–895.PubMedGoogle Scholar
  21. Kang, W.K., Icho, T. Isono, S., Kitakawa, M. and Isono, K., 1989, Mol. Gen. Genet. 217: 281–288.CrossRefGoogle Scholar
  22. Kushner, S.R., Maples, V.F. and Champney, W.S., 1977, Proc. Natl. Acad. Sci.,USA 74: 467–471.PubMedCrossRefGoogle Scholar
  23. Langer, T. Lu, C., Echols, H., Flanagan, J., Hayer, M.K. and Hart!, F.U., 1992, Nature 356: 683–689.PubMedCrossRefGoogle Scholar
  24. LaRossa, R.A. and Van Dyk, T.K. 1991, Mol. Microbiol. 5: 529–534.PubMedCrossRefGoogle Scholar
  25. Lhoest, J. and Colson, C., 1981, Eur. J. Biochem. 121: 33–37.Google Scholar
  26. Lindahl, L. 1975, J. Mol. Biol. 92: 15–37PubMedCrossRefGoogle Scholar
  27. Linder, P., Lasko, P.F., Ashburner, M., Leroy, P., Nielsen, P.J., Nishi, K., Schnier, J. and Slonimski, P.P., 1989, Nature 337: 121–122.PubMedCrossRefGoogle Scholar
  28. Marvaldi, J., Pichon, J. and Marchis-Mouren, G., 1979, Mol. Gen. Genet. 171: 317–325.PubMedCrossRefGoogle Scholar
  29. Nashimoto, H., Miura, A., Saito, H. and Uchida, H., 1985, Mol. Gen. Genet. 199: 381–387.PubMedCrossRefGoogle Scholar
  30. Nashimoto, H., Communication at the Conference “The Translational Apparatus”, Berlin, 1992.Google Scholar
  31. Nierhaus, K.H., Bordasch, K. and Homann, H.E., 1973, J. Mol. Biol. 74: 587–597.PubMedCrossRefGoogle Scholar
  32. Nierhaus, K.H., 1991, Biochimie 73: 739–755.PubMedCrossRefGoogle Scholar
  33. Nishi, K., and Schnier, J., 1986, EMBO J.5: 1373–1376.PubMedGoogle Scholar
  34. Nishi, K., Müller, M. and Schnier, J., 1987, J. Bact. 169, 4854–4856.PubMedGoogle Scholar
  35. Nishi, K. and Schnier, J., 1988, Mol. Gen. Genet. 212: 177–181.PubMedCrossRefGoogle Scholar
  36. Nishi, K., Morel-Deville, F., Hershey, J.W.B., Leighton, T. and Schnier, J., 1988, Nature 336: 496–498 and 1989, Nature 340: 246.Google Scholar
  37. Nowotny, V. and Nierhaus, K.H., 1982, Proc. Natl. Acad. Sci. USA 79: 7238–7242.PubMedCrossRefGoogle Scholar
  38. Ono, M. and Kuwano, M., 1978, J. Bact. 134: 677–679.PubMedGoogle Scholar
  39. Sachs, A.B. and Davis, R.W., 1990, Science 247: 1077–1079.PubMedCrossRefGoogle Scholar
  40. Schmid, S.R. and Linder, P., 1992, Mol. Microbiology 6: 283–291.CrossRefGoogle Scholar
  41. Schnier, J. and Nishi, K., 1988, Methods Enzymol. 164: 706–709.PubMedCrossRefGoogle Scholar
  42. Skinner, R.H., Stark, M.J.R. and Dahlberg, A.E., 1985, EMBO J. 4: 1605–1608.PubMedGoogle Scholar
  43. Squires, C. and Squires, C.L., 1992, J. Bact.174: 1081–1085.PubMedGoogle Scholar
  44. Sypherd, P.S., Bryant, R., Dimmitt, K. and Fujisawa, T., 1974, J. Supramolecular structure 2: 166–177.CrossRefGoogle Scholar
  45. Takata, R. and Isaksson, L.A., 1978, Mol. Gen. Genet. 161: 15–21.PubMedCrossRefGoogle Scholar
  46. Tanaka, S., Matsushita, Y., Yoshikawa, A. and Isono, K., 1989, Mol. Gen. Genet. 217: 289–293.PubMedCrossRefGoogle Scholar
  47. Tilly, K., McKittrick, N., Zylicz, M. and Georgopoulos, C., 1983, Cell 34: 641–646.PubMedCrossRefGoogle Scholar
  48. Toone, W.M., Rudd, K.E.,Friesen, J.D.,1991, J. Bact. 173: 3291–3302.PubMedGoogle Scholar
  49. Turco, E., Altruda, F., Ponzetto, A. and Mangiarotti, G., 1974, Biochemistry 13: 4752–4757.PubMedCrossRefGoogle Scholar
  50. Vanet, A. and Alix, J.H. Abstract n°105 presented at the Conference ‘The Translational Apparatus“, Berlin, 1992.Google Scholar
  51. Wassarman, D.A., and Steitz, J.A., 1991, Nature 349: 463–464.PubMedCrossRefGoogle Scholar
  52. Zimmermann, R.A., Ikeya, Y., and Sparling, P.F, 1973, Proc. Natl. Acad. Sci. USA 70: 71–75.PubMedCrossRefGoogle Scholar
  53. Yoshikawa, A., Isono, S., Sheback, A. and Isono, K., 1987, Mol. Gen. Genet. 209: 481–488.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Jean-Hervé Alix
    • 1
  1. 1.Institut de Biologie Physico-Chimique 13rue Pierre et Marie CurieParisFrance

Personalised recommendations