Influence of Physical and Environmental Factors on Ion Channels in Arterial Muscle

  • David R. Harder
  • Debebe Gebremedhin
  • Richard J. Roman
Part of the NATO ASI Series book series (NSSA, volume 251)


Despite the existence of pharmacomechanical coupling in arterial muscle, it is now clear that electrophysiological events occurring at the plasma membrane, which regulate the resting membrane potential, largely influence the reactivity of intact arterial muscle cells. Factors which hyperpolarize arterial muscle inhibit voltage-operated Ca2+ channels reducing their ability to respond to stimuli. Similarly, factors which depolarize arterial muscle activate voltage-sensitive Ca2+ channels leading to activation. During the last ten years it has become apparent that one of the mechanisms responsible for the transduction of physical and environmental influences with respect to vascular reactivity is activation or inhibition of ion conductance systems setting a level of membrane potential around which vascular tone is enhanced or reduced.


Transmural Pressure Arterial Muscle Myogenic Response Myogenic Tone Excise Membrane Patch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Harder, D. R. Pressure-dependent membrane depolarization in cat middle cerebral artery, Circ. Res. 55: 197, 1984.Google Scholar
  2. 2.
    Smeda, J. S. and E. E. Daniel. Elevations in arterial pressure induce the formation of spontaneous action potentials and alter neurotransmission in canine ileum arteries, Circ. Res. 62: 1104, 1988.PubMedCrossRefGoogle Scholar
  3. 3.
    Meininger, G. A. and M. J. Davis. Cellular mechanisms involved in the vascular myogenic response. Am. J. Physiol. 263 (Heart Circ. Physiol, 32); H647–H659, 1992.PubMedGoogle Scholar
  4. 4.
    Harder, D. R. Increased sensitivity of cat cerebral arteries to serotonin upon elevation of transmural pressure. Pflugers Arch. 411: 698, 1988.PubMedCrossRefGoogle Scholar
  5. 5.
    Morris, C. E. Mechanosensitive ion channels, J. Membrane Biol. 113: 93, 1990.CrossRefGoogle Scholar
  6. 6.
    Hill, M. A., J. C. Falcone and G. A. Meininger. Evidence for protein kinase C involvement in arteriolar myogenic reactivity. Am. J. Physiol. 259: H1586, 1990.PubMedGoogle Scholar
  7. 7.
    Laher, I. and J. A. Bevan. Staurosporine, a protein kinase C inhibitor attenuates Ca2+ — dependant stretch-induced vascular tone. Biochem. Biophys. Res. Commun. 158: 58, 1989.PubMedCrossRefGoogle Scholar
  8. 8.
    Berridge, M. J. Inositol triphosphate and diacylglycerol: Two interacting second messengers. Ann. Rev. Biochem. 56: 159, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    DeRiemer, S. A., J. A. Strong, K. A. Alpert, D. Greengard and L. K. Kaczmarek. Enhancement of calcium current in “Aplysia” neurones by phorbol ester and protein kinase C. Nature 313: 313, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Heagerty, A. M. and J. D. Ollerenshaw. The phosphoinositide signalling system and hypertension. J. Hypertension 5: 515, 1987.CrossRefGoogle Scholar
  11. 11.
    Ma, Y-H, D. Gebremedhin, M. L. Schwartzman, J. R. Falck, J. E. Clark, B. S. Masters, D. R. Harder and R. J. Roman. 20-HETE is an endogenous vasoconstrictor of dog renal arcuate arteries. Circ. Res. 000:000 In Press, 1992.Google Scholar
  12. 12.
    Escalante, B. W., C. Sessa, J. R. Falck, P. Yadagiri and M. L. Schwartzman. Vasoactivity of 20-hydroxyeicosatetraenoic acid is dependent on metabolism by cyclooxygenase, J. Pharmacol. Exp. Ther. 248: 229–232, 1989.PubMedGoogle Scholar
  13. 13.
    Siegle, G. and J. Grote. PO2 induced changes of membrane potential and tension in vascular smooth musculative. In: “Oxygen Sensing in Tissues”, H. Acker, ed., Springer-Verlag, Berlin, 1988.Google Scholar
  14. 14.
    Broyden, J. E. and G.C. Wellman. Endothelium-dependent dilation of feline cerebral arteries: Role of membrane potential and cyclic nucleotides. J. Cerebral Blood Flow Metabolism 9: 256, 1989.CrossRefGoogle Scholar
  15. 15.
    Gebremedin, D., P. Bonnet, S. K. England, N. J. Rusch, J. H. Lombard and D. R. Harder. Hypoxia increases the activity of Ca2+-sensitive K+ channel in cat cerebral arterial muscle cell membranes, Pflugers Archiv. Submitted, 1992.Google Scholar
  16. 16.
    Harder, D. R., J. Narayanan, Y-H Ma and R. J. Roman. Activation of phospholipase C and induction of 2nd messengers in pressurized renal arteries, FASEB Journal 6: A1733, 1992.Google Scholar
  17. 17.
    Lombard, J. H., J. Smeda, J. A. Madden and D. R. Harder. Effect of reduced oxygen availability upon myogenic depolarization and contraction of cat middle cerebral artery. Circ. Res. 58: 565, 1986.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • David R. Harder
    • 1
  • Debebe Gebremedhin
    • 1
  • Richard J. Roman
    • 1
  1. 1.Department of Physiology and Cardiovascular Research CenterMedical College of WisconsinMilwaukeeUSA

Personalised recommendations