Skip to main content

Calcium Signalling in Vascular Endothelial Cells: Ca2+ Entry and Release

  • Chapter
Ion Flux in Pulmonary Vascular Control

Part of the book series: NATO ASI Series ((NSSA,volume 251))

Abstract

Endothelial cells serve both autocrine and paracrine functions within the cardiovascular system to modulate blood pressure and maintain tissue perfusion. Endothelial cells respond to a variety of humoral and physical stimuli to release endothelium-dependent vasodilators, such as prostacyclin (PGI2) and endothelium-derived relaxing factor (EDRF), and vasoconstrictors such as endothelin (Furchgott and Vanhoutte, 1989). The synthesis and release of endothelium-derived vasodilators have been shown to be Ca2+-dependent whereby the production of PGI2 and EDRF is attenuated by the removal of extracellular Ca2+ (Singer and Peach, 1982; Long and Stone, 1985; Griffith et al., 1986; Lückhoff et al., 1988). It is now well established that an EDRF released from endothelial cells, both in situ and in culture, is nitric oxide (NO) or a nitroso compound that readily releases NO, and that NO is synthesized in endothelial cells by the oxidation of one of the two equivalent guanidino nitrogens of L-arginine via a cytoplasmic NADPH-and Ca2+-dependent enzyme, termed NO synthase (see Moncada et al., 1991). Changes in the extracellular Ca2+ concentration around the physiological range have been shown to modulate the synthesis/release of NO by the vascular endothelium and consequently, vascular tone (Lopez-Jaramillo et al., 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.J., Barakeh, J., Laskey, R., and van Breemen, C., 1989, Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 3:2389–2400.

    PubMed  CAS  Google Scholar 

  • Ando, J., Komatsuda, T., and Kamiya, A., 1988, Cytoplasmic calcium response to fluid shear stress in cultured vascular endothelial cells. In Vitro Cell. & Dev. Biol. 24:871–877.

    Article  CAS  Google Scholar 

  • Benham, C.D. and Bolton, T.B., 1986, Spontaneous transient outward currents in single visceral and vascular smooth muscle cells of rabbit. J. Physiol. 381:385–406.

    PubMed  CAS  Google Scholar 

  • Benham, C.D., Bolton, T.B., Lang, R.J. and Takewaki, T., 1986, Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery. J. Physiol. 371:45–67.

    PubMed  CAS  Google Scholar 

  • Benham, C.D. and Tsien, R.W., 1986, Calcium-permeable channels in vascular smooth muscle: Voltage-activated, receptor-operated, and leak channels, in: “Cell Calcium and the Control of Membrane Transport”, L.J. Mandel and D.C. Eaton, ed., pp 45–64, The Rockefeller University Press, New York.

    Google Scholar 

  • Berridge, M.J. and Irvine, R.F., 1989, Inositol phosphates and cell signalling. Nature 341:197–205.

    Article  PubMed  CAS  Google Scholar 

  • Bezprozvanny, I., Watras, J., and Ehrlich, B.E., 1991, Bell-shaped calcium responses of inositol 1,4,5-trisphosphate-gated and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T.B. and Lim, S.P., 1989, Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J. Physiol. 409:385–401.

    PubMed  CAS  Google Scholar 

  • Bossu, J-L., Elhamdani, A., Feltz, A., Tanzi, F., Aunis, D. and Thierse, D., 1992, Voltage-gated Ca entry in isolated bovine capillary endothelial cells: evidence of a new type of Bay K 8644-sensitive channel. Pflügers Arch 420:200–207.

    Article  PubMed  CAS  Google Scholar 

  • Bossu, J-L., Feltz, A., Rodeau, J-L. and Tanzi, F., 1989, Voltage-dependent calcium currents in freshly dissociated capillary endothelial cells. FEBS Lett. 255:377–380.

    Article  PubMed  CAS  Google Scholar 

  • Bregestovski, P., Bakhramov, A., Danilov, S., Moldobaeva, A., and Takeda, K., 1988, Histamine-induced inward currents in cultured endothelial cells from human umbilical vein. Br. J. Pharmacol. 95:429–436.

    Article  PubMed  CAS  Google Scholar 

  • Brunet, P.C. and Bény, J-L., 1989, Substance P and bradykinin hyperpolarize pig coronary artery endothelial cells in primary culture. Blood Vessels 26:228–234.

    PubMed  CAS  Google Scholar 

  • Buchan, K.W. and Martin, W., 1991, Bradykinin induces elevations of cytosolic calcium through mobilization of intracellular and extracellular pools in bovine aortic endothelial cells. Br. J. Pharmacol. 102:35–40.

    Article  PubMed  CAS  Google Scholar 

  • Busse, R., Fichtner, H., Lückhoff, A., and Kohlhardt, M., 1988, Hyperpolarization and increased free calcium in acetylcholine-stimulated endothelial cells. Am. J. Physiol. 255:H965–H969.

    PubMed  CAS  Google Scholar 

  • Cannell, M.B. and Sage, S.O., 1989, Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J. Physiol. 419:555–568.

    PubMed  CAS  Google Scholar 

  • Carter, T.D. and Ogden, D., 1992, Kinetics of intracellular calcium release by inositol 1,4,5-trisphosphate and extracellular ATP in porcine cultured aortic endothelial cells. Proc. R. Soc. Lond. B.:235–241.

    Google Scholar 

  • Changya, L., Gallacher, D.V., Irvine, R.F., Potter, B.V.L., and Petersen, O.H., 1989, Inositol 1,3,4,5-tetrakisphosphate is essential for sustained activation of the calcium-dependent K+ current in single internally perfused mouse lacrimal acinar cells. J. Membrane Biol. 109:85–93.

    Article  CAS  Google Scholar 

  • Chen, G. and Cheung, D.W., 1992, Characterization of acetylcholine-induced membrane hyperpolarization in endothelial cells. Circ. Res. 70:257–263.

    Article  PubMed  CAS  Google Scholar 

  • Colden-Stanfield, M., Schilling, W.P., Ritchie, A.K., Eskin, S.G., Navarro, L.T., and Kunze, D.L., 1987, Bradykinin-induced increases in cytosolic calcium and ionic currents in cultured bovine aortic endothelial cells. Circ. Res. 61:632–640.

    Article  PubMed  CAS  Google Scholar 

  • Colden-Stanfield, M., Schilling, W.P., Possani, L.D. and Kunze, D.L., 1990, Bradykinin-induced potassium current in cultured bovine aortic endothelial cells. J. Membrane Biol. 116:227–238.

    Article  CAS  Google Scholar 

  • D’Amore, P. and Shepro, D., 1977, Stimulation of growth and calcium influx in cultured, bovine, aortic endothelial cells by platelets and vasoactive substances. J. Cell Physiol. 92:177–184.

    Article  CAS  Google Scholar 

  • Danthuluri, N.R., Cybulsky, M.I. and Brock, T. A., 1988, ACh-induced calcium transients in primary cultures of rabbit aortic endothelial cells. Am. J. Physiol. 255:H1549–H15

    PubMed  CAS  Google Scholar 

  • Derian, C.K. and Moskowitz, M.A., 1986, Polyphosphoinositide hydrolysis in endothelial cells and carotid artery segments (Bradykinin-2 receptor stimulation is calcium independent). J. Biol. Chem. 261:3831–3837.

    PubMed  CAS  Google Scholar 

  • Dolor, R.J., Hurwitz, L.M., Mirza, Z., Strauss, H.C., and Whorton, A.R., 1992, Regulation of extracellular calcium entry in endothelial cells: role of intracellular calcium pool. Am. J. Physiol. 262:C171–C181.

    PubMed  CAS  Google Scholar 

  • Endo, M., 1985, Calcium release from sarcoplasmic reticulum. Curr. Topics Memb. Trans. 25:181–230.

    Article  CAS  Google Scholar 

  • Fay, F.S., Carrington, W., and Fogarty, K.E., 1989, Three-dimensional molecular distribution in single cells analysed using the digital imaging microscope. J. Microscopy 153:133–149.

    Article  CAS  Google Scholar 

  • Ferris, C.D., Huganir, R.L., Supattapone, S., and Snyder, S.H., 1989, Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342:87–89.

    Article  PubMed  CAS  Google Scholar 

  • Fong, P., Turner, P.R., Denetclaw, W.F., and Steinhardt, R.A., 1990, Increased activity of calcium leak channels in myotubes of Duchenne human and mdx mouse origin. Science 250:673–676.

    Article  PubMed  CAS  Google Scholar 

  • Freay, A., Johns, A., Adams, D.J., Ryan, U.S., and van Breemen, C., 1989, Bradykinin and inositol-l,4,5-trisphosphate stimulated calcium release from intracellular stores in cultured bovine endothelial cells. Pflügers Arch 414:377–384.

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R.F. and Vanhoutte, P.M., 1989, Endothelium-derived relaxing and contracting factors. FASEB J. 3:2007–2018.

    PubMed  CAS  Google Scholar 

  • Geiger, R.V., Berk, B.C., Alexander, R.W., and Nerem, R.M., 1992, Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis. Am. J. Physiol. 262:C1411–C1417.

    PubMed  CAS  Google Scholar 

  • Ghosh, T.K., Mullaney, J.M., Tarazi, F.I., and Gill, D.L., 1989, GTP-activated communication between distinct inositol 1,4,5-trisphosphate-sensitiveand-insensitive calcium pools. Nature 340:236–239.

    Article  PubMed  CAS  Google Scholar 

  • Gordon, J.L. and Martin, W., 1983, Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br. J. Pharmacol. 79:531–541.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, T.M., Edwards, D.H., Newby, A.C., Lewis, M.J., and Henderson, A.H., 1986, Production of endothelium-derived relaxant factor is dependent on oxidative phosphorylation and extracellular calcium. Cardiovasc. Res. 20:7–12.

    Article  PubMed  CAS  Google Scholar 

  • Hallam, T.J., Jacob, R., and Merritt, J.E., 1988, Evidence that agonists stimulate bivalentcation influx into human endothelial cells. Biochem. J. 255:179–184.

    PubMed  CAS  Google Scholar 

  • Hallam, T.J., Jacob, R., and Merritt, J.E., 1989, Influx of bivalent cations can be independent of receptor stimulation in human endothelial cells. Biochem. J. 259:125–129.

    PubMed  CAS  Google Scholar 

  • Hallam, T.J. and Pearson, J.D., 1986, Exogenous ATP raises cytoplasmic free calcium in fura-2 loaded piglet aortic endothelial cells. FEBS Lett. 207:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Hoth, M. and Penner, R., 1992, Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–355.

    Article  PubMed  CAS  Google Scholar 

  • Iino, T., Kobayashi, T., and Endo, M., 1988, Use of ryanodine for the functional removal of the calcium store in smooth muscle cells of the guinea-pig. Biochem. Biophys. Res. Comm. 152:417–422.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., Moor, R.M., Pollock, W.K., Smith, P.M., and Wreggett, K.A., 1988, Inositol phosphates: proliferation, metabolism and function. Phil. Trans. R. Soc. B 320:281–298.

    Article  PubMed  CAS  Google Scholar 

  • Irvine, R.F., 1992, Inositol phosphates and Ca2+ entry: toward a proliferation or simplification? FASEB J. 6:3085–3091.

    PubMed  CAS  Google Scholar 

  • Jacob, R., 1990, Agonist-stimulated divalent cation entry into single cultured human umbilical vein endothelial cells. J. Physiol. 421:55–77.

    PubMed  CAS  Google Scholar 

  • Jacob, R., Merritt, J.E., Hallam, T.J., and Rink, T.J., 1988, Repetitive spikes in cytoplasmic calcium evoked by histamine in human endothelial cells. Nature 335:40–45.

    Article  PubMed  CAS  Google Scholar 

  • Janigro, D., Gordon, E.L., and Winn, H.R., 1992, ATP-sensitive potassium channels in rat brain microvascular endothelial cells. Soc. Neurosci. Abst. 18:1263.

    Google Scholar 

  • Johns, A., Lategan, T.W., Lodge, N.J., Ryan, U.S., van Breemen, C., and Adams, D.J., 1987, Calcium entry through receptor-operated channels in bovine pulmonary artery endothelial cells. Tissue & Cell 19:733–745.

    Article  CAS  Google Scholar 

  • Kass, G.E.N., Duddy, S.K., Moore, G.A., and Orrenius, S., 1989, 2′,5′-Di(tert-butyl)-1,4-benzohydroquinone rapidly elevates cytosolic Ca2+ concentration by mobilizing the inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. J. Biol. Chem. 264:15192–15198.

    PubMed  CAS  Google Scholar 

  • Kuno, M. and Gardner, P., 1987, Ion channels activated by inositol 1,4,5-trisphosphate in plasma membrane of human T-lymphocytes. Nature 326:301–304.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, T.L., Kent, R.S., and Whorton, A.R., 1986, Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J. Biol. Chem. 261:15288–15293.

    PubMed  CAS  Google Scholar 

  • Lansman, J.B., Hallam, T.J., and Rink, T.J., 1987, Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers. Nature 325:811–813.

    Article  PubMed  CAS  Google Scholar 

  • Laskey, R.E., Adams, D.J., Johns, A., Rubanyi, G.M., and van Breemen, C., 1990, Membrane potential and Na+-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J. Biol. Chem. 265:2613–2619.

    PubMed  CAS  Google Scholar 

  • Lodge, N.J., Adams, D.J., Johns, A., Ryan, U.S., and van Breemen, C., 1988, Calcium activation of endothelial cells, in: “Resistance Arteries”. W. Halpern, B.L. Pegram, J.E. Brayden, K. Mackey, M.K. McLaughlin, G. Osol eds. pp. 152–161, Perinatology Press, N.Y.

    Google Scholar 

  • Long, C.J. and Stone, T.W., 1985, The release of endothelium-derived relaxant factor is calcium dependent. Blood Vessels 22:205–208.

    PubMed  CAS  Google Scholar 

  • Lopez-Jaramillo, P., Gonzalez, M.C., Palmer, R.M.J., and Moncada, S., 1990, The crucial role of physiological Ca2+ concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br. J. Pharmacol. 101:489–493.

    Article  PubMed  CAS  Google Scholar 

  • Lückhoff, A. and Busse, R., 1990a, Refilling of endothelial calcium stores without bypassing the cytosol. FEBS Lett. 276:108–110.

    Article  PubMed  Google Scholar 

  • Lückhoff, A. and Busse, R., 1990b, Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflügers Arch 416:305–311.

    Article  PubMed  Google Scholar 

  • Lückhoff, A. and Busse, R., 1990c, Activators of potassium channels enhance calcium influx into endothelial cells as a consequence of potassium currents. Naunyn-Schmiedeberg’s Arch Pharmacol. 342:94–99.

    Google Scholar 

  • Lückhoff, A. and Clapham, D.E., 1992, Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca2+-permeable channel. Nature 355:356–358.

    Article  PubMed  Google Scholar 

  • Lückhoff, A., Pohl, U., Mülsch, A., and Busse, R., 1988, Differential role of extra-and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br. J. Pharmacol. 95:189–196.

    Article  PubMed  Google Scholar 

  • Mehrke, G. and Daut, J., 1990, The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators. J. Physiol. 430:251–272.

    PubMed  CAS  Google Scholar 

  • Mendelowitz, D., Bacal, K., and Kunze, D.L., 1992, Bradykinin-activated calcium influx pathway in endothelial cells. Am. J. Physiol. 262:H942–H948.

    Google Scholar 

  • Merritt, J.E. and Rink, T.J., 1987, Regulation of cytosolic free calcium in fura-2-loaded rat parotid acinar cells. J. Biol. Chem. 262:17362–17369.

    PubMed  CAS  Google Scholar 

  • Mo., M., Eskin, S.G., and Schilling, W.P., 1991, Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol. 260:H1698–H1707.

    PubMed  CAS  Google Scholar 

  • Moncada, S., Palmer, R.M.J., and Higgs, E.A., 1991, Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43:109–142.

    PubMed  CAS  Google Scholar 

  • Morgan-Boyd, R., Stewart, J.M., Vavrek, R.J. and Hassid, A., 1987, Effects of bradykinin and angiotensin II on intracellular Ca2+ dynamics in endothelial cells. Am. J. Physiol. 253:C588–C598.

    PubMed  CAS  Google Scholar 

  • Morris, A.P., Gallacher, D.V., Irvine, R.F., and Petersen, O.H., 1987, Synergism of inositol trisphosphate and inositol tetrakisphosphate in activating Ca2+-dependent K+ channels. Nature 330:653–655.

    Article  PubMed  CAS  Google Scholar 

  • Mullaney, J.M., Yu, M., Ghosh, T.K., and Gill, D.L., 1988, Calcium entry into the inositol 1,4,5-trisphosphate-releasable calcium pool is mediated by a GTP-regulatory mechanism. Proc. Natl. Acad. Sci. USA 85:2499–2503.

    Article  PubMed  CAS  Google Scholar 

  • Nakache, M. and Gaub, H.E., 1988, Hydrodynamic hyperpolarization of endothelial cells. Proc. Natl. Acad. Sci. USA 85:1841–1843.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B., 1990, Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflügers Arch 416:609–611.

    Article  PubMed  CAS  Google Scholar 

  • Nilius, B., 1991, Regulation of transmembrane calcium fluxes in endothelium. NIPS 6:110–114.

    CAS  Google Scholar 

  • Nilius, B. and Riemann, D., 1990, Ion channels in human endothelial cells. Gen. Physiol. Biophys. 9:89–112.

    PubMed  CAS  Google Scholar 

  • Nollert, M.U., Eskin, S.G., and Mclntire, L.V., 1990, Shear stress increases inositol trisphosphate levels in human endothelial cells. Biochem. Biophys. Res. Comm. 170:281–287.

    Article  PubMed  CAS  Google Scholar 

  • Olesen, S.-P., Clapham, D.E., and Davies, P.F., 1988, Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170.

    Article  PubMed  CAS  Google Scholar 

  • Parker, I. and Ivorra, I., 1991, Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J. Physiol. 433:229–240.

    PubMed  CAS  Google Scholar 

  • Peach, M.J., Singer, H.A., Izzo, N.J., and Loeb, A.L., 1987, Role of calcium in endothelium-dependent relaxation of arterial smooth muscle. Am. J. Cardiol. 50:35A–43A.

    Article  Google Scholar 

  • Penner, R., Matthews, G., and Neher, E., 1988, Regulation of calcium influx by second messengers in rat mast cells. Nature 334:499–504.

    Article  PubMed  CAS  Google Scholar 

  • Pirotton, S., Raspe, E., Demolie, D., Erneux, C. and Boeynaems, J.-M., 1987, Involvement of inositol 1,4,5-trisphosphate and calcium in the action of adenine nucleotides on aortic endothelial cells. J. Biol. Chem. 262:17461–17466.

    PubMed  CAS  Google Scholar 

  • Pollock, W.K., Wreggett, K.A., and Irvine, R.F., 1988, Inositol phosphate production and Ca2+ mobilization in human umbilical-vein endothelial cells stimulated by thrombin and histamine. Biochem. J. 256:371–376.

    PubMed  CAS  Google Scholar 

  • Popp, R. and Gögelein, H., 1992, A calcium and ATP sensitive nonselective cation channel in the antiluminal membrane of rat cerebral capillary endothelial cells. Biochim. Biophys. Acta 1108:59–66.

    Article  PubMed  CAS  Google Scholar 

  • Popp, R., Hoyer, J., Meyer, J., Galla, H-J., and Gögelein, H., 1992, Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J. Physiol. 454:435–449.

    PubMed  CAS  Google Scholar 

  • Putney, J.W., 1986, A model for receptor-regulated calcium entry. Cell Calcium 7:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J.W., 1990, Capacitative calcium entry revisited. Cell Calcium 11:611–624.

    Article  PubMed  CAS  Google Scholar 

  • Rizzuto, R., Simpson, A.W.M., Brini, M., and Pozzan, T., 1992, Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 3358:325–327.

    Article  Google Scholar 

  • Ross, C.A., Meldolesi, J., Milner, T.A., Satoh, T., Supattapone, S., and Snyder, S.H., 1989, Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470.

    Article  PubMed  CAS  Google Scholar 

  • Rubanyi, G.M., Freay, A.D., Kauser, K., Johns, A., and Harder, D.R., 1990, Mechanoreception by the endothelium: mediators and mechanisms of pressure-and flow-induced vascular responses. Blood Vessels 27:246–247.

    PubMed  CAS  Google Scholar 

  • Rusko, J., Tanzi, F., van Breemen, C., and Adams, D.J., 1992a, Calcium-activated potassium channels in native endothelial cells from rabbit aorta: Conductance, Ca2+ sensitivity and block. J. Physiol. 455:601–621.

    PubMed  CAS  Google Scholar 

  • Rusko, J., van Breemen, C., and Adams, D.J., 1992b, Caffeine-induced Ca2+ release from intracellular stores in freshly dissociated endothelial cells from rabbit aorta. J. Physiol. (abst.) (in press).

    Google Scholar 

  • Sage, S.O., Adams, D.J., and van Breemen, C., 1989, Synchronized oscillations in cytoplasmic free calcium concentration in confluent bradykinin-stimulated bovine pulmonary artery endothelial cell monolayers. J. Biol. Chem. 264:6–9.

    PubMed  CAS  Google Scholar 

  • Sage, S.O., van Breemen, C., and Cannell, M.B., 1991, Sodium-calcium exchange in cultured bovine pulmonary artery endothelial cells. J. Physiol. 440:569–580.

    PubMed  CAS  Google Scholar 

  • Sakai, T., 1990, Acetylcholine induces Ca-dependent K currents in rabbit endothelial cells. Jap. J. Pharmacol 53:235–246.

    Article  PubMed  CAS  Google Scholar 

  • Sauvé, R., Chahine, M., Tremblay, J., and Hamet, P., 1990, Single-channel analysis of the electrical response of bovine aortic endothelial cells to bradykinin stimulation: contribution of a Ca2+-dependent K+ channel. J. Hypertens. 8:S193–S201.

    Google Scholar 

  • Sauvé, R., Parent, L., Simoneau, C., and Roy, G., 1988, External ATP triggers a biphasic activation process of a calcium-dependent K+ channel in cultured bovine aortic endothelial cells. Pflügers Arch 412:469–481.

    Article  PubMed  Google Scholar 

  • Schilling, W.P., Cabello, O.A., and Rajan, L., 1992, Depletion of the inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store in vacsular endothelial cells activates the agonist-sensitive Ca2+-influx pathway. Biochem. J. 284:521–530.

    PubMed  CAS  Google Scholar 

  • Schilling, W.P., Rajan, L., and Strobl-Jager, E., 1989, Characterization of thee bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells: Saturability, selectivity and kinetics. J. Biol. Chem. 264:12838–12848.

    PubMed  CAS  Google Scholar 

  • Schilling, W.P., Ritchie, A.K., Navarro, L.T., and Eskin, S.G., 1988, Bradykinin stimulated calcium influx in cultured bovine aortic endothelial cells. Am. J. Physiol. 255:H219–H227.

    PubMed  CAS  Google Scholar 

  • Schwarz, G., Droogmans, G., and Nilius, B., 1992, Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflügers Arch 421:394–396.

    Article  PubMed  CAS  Google Scholar 

  • Shen, J., Luscinskas, F.W., Connolly, A., Dewey, CF., and Gimbrone, M.A., 1992, Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells. Am. J. Physiol. 262:C384–C390.

    PubMed  CAS  Google Scholar 

  • Silver, M.R. and DeCoursey, T.E., 1990, Intrinsic gating of inward rectifier in bovine pulmonary artery endothelial cells in the presence or absence of internal Mg2+. J. Gen. Physiol. 96:109–133.

    Article  PubMed  CAS  Google Scholar 

  • Singer, H.A. and Peach, M.J., 1982, Calcium-and endothelial-mediated vascular smooth muscle relaxation in rabbit aorta. Hypertension 4(Suppl. II):II19–II25.

    Google Scholar 

  • Streb, H., Bayerdorffer, E., Haase, W., Irvine, R.F., and Shulz, I., 1984, Effect of inositol 1,4,5-trisphosphate on isolated subcellular fractions of rat pancreas. J. Membrane Biol. 81:241–253.

    Article  CAS  Google Scholar 

  • Sturek, M., Smith, P., and Stehno-Bittel, L., 1991, In vitro models of vascular endothelial cell calcium regulation, in: “Ion Channels of Vascular Smooth Muscle Cells and Endothelial Cells”. N. Sperelakis and Kuriyama, eds. pp 349-364, Elsevier Science Publishing Co..0.

    Google Scholar 

  • Takeda, K. and Klepper, M., 1990, Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells: A review. Blood Vessels 27:169–183.

    PubMed  CAS  Google Scholar 

  • Takeda, K., Schini, V., and Stoeckel, H., 1987, Voltage-activated potassium, but not calcium currents in cultured bovine aortic endothelial cells. Pflügers Arch 410:385–393.

    Article  PubMed  CAS  Google Scholar 

  • Takemura, H., Hughes, A.R., Thastrup, O., and Putney, J.W., 1989, Activation of calcium entry by the tumor promotor thapsigargin in rat parotid acinar cells. J. Biol. Chem. 264:12266–12271.

    PubMed  CAS  Google Scholar 

  • Thuringer, D. and Sauvé, R., 1992, A patch clamp study of the Ca2+ mobilization from internal stores in bovine aortic endothelial cells. I. Effects of caffeine on intracellular Ca2+ stores. J. Membrane Biol. 130:125–137.

    CAS  Google Scholar 

  • Van Breemen, C. and Saida, K., 1989, Cellular mechanisms regulating [Ca2+]i in smooth muscle. Ann. Rev. Physiol. 51:315–329.

    Article  Google Scholar 

  • Volpe, P., Krause, K., Hashimoto, S., Zorzato, F., Pozzan, T., Meldolesi, J., and Lew, D.P., 1988, “Calciosome”, a cytoplasmic organelle: the inositol 1,4,5-trisphosphate-sensitive Ca2+ store of nonmuscle cells? Proc. Natl. Acad. Sci. USA 85:1091–1095.

    Article  PubMed  CAS  Google Scholar 

  • Whorton, A.R., Willis, C.E., Kent, R.S., and Young, S.L., 1984, The role of calcium in the regulation of prostacyclin synthesis in porcine aortic endothelial cells. Lipids 19:17–24.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, Y., Chen, G., Miwa, K., and Suzuki, H., 1992, Permeability and Mg2+ blockade of histamine-operated cation channel in endothelial cells of rat intrapulmonary artery. J. Physiol. 450:395–408.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adams, D.J., Rusko, J., Van Slooten, G. (1993). Calcium Signalling in Vascular Endothelial Cells: Ca2+ Entry and Release. In: Weir, E.K., Hume, J.R., Reeves, J.T. (eds) Ion Flux in Pulmonary Vascular Control. NATO ASI Series, vol 251. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2397-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2397-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6016-2

  • Online ISBN: 978-1-4615-2397-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics