Advertisement

Methanogenesis pp 304-334 | Cite as

Fermentation of Acetate

  • James G. Ferry
Part of the Chapman & Hall Microbiology Series book series (CHMBS)

Abstract

It was 100 years after the discovery of “combustible air” by Alessandro Volta in 1776 that acetate was first implicated as a substrate for methanogenesis. In 1876, Hoppe-Seyler demonstrated that sewage sludge produced methane when amended with acetate. Later, Hoppe-Seyler (1887) showed that enrichment cultures converted the substrate to equimolar amounts of methane and carbon dioxide. Nearly 40 years later, Söehngen (1906) described Gram-negative sarcina and a filamentous rod-shaped microorganism in acetate-utilizing enrichment cultures. However, nearly another 40 years elapsed before Schnellen (1947) described the first pure cultures (of Methanosarcina barken) which grew on acetate. Growth was slow and subsequent isolates also produced methane from acetate at rates which were considered too low to account for methanogenesis in the environment. As a result, it was hypothesized that cocultures were required for the rapid conversion of acetate to methane. During the 1960s, it became evident that most of the methane in freshwater environments is derived from acetate (Jeris and McCarty, 1965; Smith and Mah, 1966), a development which created a renewed interest in methanogenic acetotrophs. In the late 1970s and early 1980s, it was shown that pure cultures of Methanosarcina converted acetate to methane and carbon dioxide in defined media and at rates much greater than previously reported (Mah et al., 1978; Weimer and Zeikus, 1978; Smith and Mah, 1980).

Keywords

Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Methanosarcina Barkeri Carbon Monoxide Dehydrogenase Aceticlastic Methanogen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbanat, D. R., and J. G. Ferry. 1991. Resolution of component proteins in an enzyme complex from Methanosarcina thermophila catalyzing the synthesis or cleavage of acetyl-CoA. Proc. Natl. Acad. Sci. USA 88:3272–3276.PubMedCrossRefGoogle Scholar
  2. Abbanat, D. R., and J. G. Ferry. 1990. Synthesis of acetyl-CoA by the carbon monoxide dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:7145–7150.Google Scholar
  3. Aceti, D. J., and J. G. Ferry. 1988. Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:15444–15448.Google Scholar
  4. Ahring, B. K., F. Alatriste-Mondragon, P. Westermann, and R. A. Man. 1991. Effects of cations on Methanosarcina thermophila TM-1 growing on moderate concentrations of acetate. Production of single cells. Appl. Microbiol. Biotechnol. 35:686–689.CrossRefGoogle Scholar
  5. Ahring, B. K., and P. Westermann. 1984. Isolation and characterization of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 25:47–52.CrossRefGoogle Scholar
  6. Ahring, B. K., and P. Westermann. 1985. Methanogenesis from acetate: physiology of a thermophilic, acetate-utilizing methanogenic bacterium. FEMS Microbiol. Lett. 28:15–19.CrossRefGoogle Scholar
  7. Ahring, B. K., P. Westermann, and R. A. Man. 1991. Hydrogen inhibition of acetate metabolism and kinetics of hydrogen consumption by Methanosarcina thermophila TM-1. Arch. Microbiol. 157:38–42.CrossRefGoogle Scholar
  8. Albracht, S. P. J., D. Ankel-Fuchs, R. Böcher, J. Ellermann, J. Moll, J. W. van der Zwaan, and R. K. Thauer. 1988. Five new EPR signals assigned to nickel in methylcoenzyme M reductase from Methanobacterium thermoautotrophicum, strain Marburg. Biochim. Biophys. Acta. 941:86–102.CrossRefGoogle Scholar
  9. Aldrich, H. C., D. B. Beimborn, M. Bokranz, and P. Schönheit. 1987. Immunocytochemical localization of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Arch. Microbiol. 147:190–194.CrossRefGoogle Scholar
  10. Baresi, L. 1984. Methanogenic cleavage of acetate by ly sates of Methanosarcina barkeri. J. Bacteriol. 160:365–370.Google Scholar
  11. Baresi, L., R. A. Man, D. M. Ward, and I. R. Kaplan. 1978. Methanogenesis from acetate: enrichment studies. Appl. Environ. Microbiol. 36:186–197.PubMedGoogle Scholar
  12. Baresi, L. and R. S. Wolfe. 1981. Levels of coenzyme F420, coenzyme M, hydrogenase, and methylcoenzyme M methylreductase in acetate-grown Methanosarcina. Appl. Environ. Microbiol. 41:388–391.Google Scholar
  13. Barker, H.A. 1936. On the biochemistry of the methane fermentation. Arch. Microbiol. 7:404–419.Google Scholar
  14. Blaut, M. and G. Gottschalk. 1982. Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch. Microbiol. 133:230–235.CrossRefGoogle Scholar
  15. Boone, D. R. 1991. Strain-GP6 is proposed as the neotype strain of Methanothrix soehngenii VP pro dynon Methanothrix concilii VP and Methanosaeta concilii VP. Int. J. Syst. Bacteriol. 41:588–589.CrossRefGoogle Scholar
  16. Boone, D. R., J. A. G. F. Menaia, J. E. Boone, and R. A. Mah. 1987. Effects of hydrogen pressure during growth and effects of pregrowth with hydrogen on acetate degradation by Methanosarcina species. Appl. Environ. Microbiol. 53:83–87.PubMedGoogle Scholar
  17. Bott, M., B. Eikmanns, and R. K. Thauer. 1986. Coupling of carbon monoxide oxidation to CO2 and H2 with the phosphorylation of ADP in acetate-grown Methanosarcina barkeri. Eur. J. Biochem. 159:393–398.CrossRefGoogle Scholar
  18. Bott, M., and R. K. Thauer. 1989. Proton translocation coupled to the oxidation of carbon monoxide to CO2 and H2 in Methanosarcina barkeri. Eur. J. Biochem. 179:469–472.CrossRefGoogle Scholar
  19. Buswell, A. M. and F. W. Sollo. 1948. The mechanism of the methane fermentation. J. Am. Chem. Soc. 70:1778–1780.PubMedCrossRefGoogle Scholar
  20. Cao, X., and J. A. Krzycki. 1991. Acetate-dependent methylation of two corrinoid proteins in extracts of Methanosarcina barkeri. J. Bacteriol. 173:5439–5448.Google Scholar
  21. Clements, A.P., and J.G. Ferry. 1992. Cloning, nucleotide sequence, and transcriptional analyses of the gene encoding a ferredoxin from Methanosarcina thermophila. J. Bacteriol. 174:5244–5250.Google Scholar
  22. Clements, A. P., R. H. White, and J. G. Ferry. 1993. Structural characterization and physiological function of component B from Methanosarcina thermophila. Arch. Microbiol., 159:296–300.CrossRefGoogle Scholar
  23. Eggen, R. I. L., A. C. M. Geerling, A. B. P. Boshoven, and W. M. de Vos. 1991. Cloning, sequence analysis, and functional expression of the acetyl coenzyme A synthetase gene from Methanothrix soehngenii in Escherichia coli. J. Bacteriol., 173:6383–6389.Google Scholar
  24. Eggen, R. I. L., A. C. M. Geerling, M. S. M. Jetten, and W. M. de Vos. 1991. Cloning, expression, and sequence analysis of the genes for carbon monoxide dehydrogenase of Methanothrix soehngenii. J. Biol. Chem. 266:6883–6887.Google Scholar
  25. Eikmanns, B., and R. K. Thauer. 1984. Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch. Microbiol. 138:365–370.CrossRefGoogle Scholar
  26. Eikmanns, B., and R. K. Thauer. 1985. Evidence for the involvement and role of a corrinoid enzyme in methane formation from acetate in Methanosarcina barkeri. Arch. Microbiol. 142:175–179.CrossRefGoogle Scholar
  27. Fathepure, B. Z. 1983. Isolation and characterization of an aceticlastic methanogen from a biogas digester. FEMS Microbiol. Lett. 19:151–156.CrossRefGoogle Scholar
  28. Fathepure, B. Z. 1987. Factors affecting the methanogenic activity of Methanothrix soehngenii VNBF. Appl. Environ. Microbiol. 53:2978–2982.PubMedGoogle Scholar
  29. Ferguson, T. J., and R. A. Man. 1983. Effect of H2-CO2 on methanogenesis from acetate or methanol in Methanosarcina spp. Appl. Environ. Microbiol. 46:348–355.PubMedGoogle Scholar
  30. Ferry, J. G. 1992. Methane from acetate. J. Bacteriol. 174:5489–5495.PubMedGoogle Scholar
  31. Fischer, R., P. Gartner, A. Yeliseev, and R. K. Thauer. 1992. N-5-methyltetrahydromethanopterin — coenzyme-M methyltransferase in methanogenic archaebacteria is a membrane protein. Arch. Microbiol. 158:208–217.PubMedCrossRefGoogle Scholar
  32. Fischer, R., and R. K. Thauer. 1988. Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri. Dependence of the reaction on coenzyme A. FEBS Lett. 228:249–253.CrossRefGoogle Scholar
  33. Fischer, R., and R. K. Thauer. 1989. Methyltetrahydromethanopterin as an intermediate in methanogenesis from acetate in Methanosarcina barkeri. Arch. Microbiol. 151:459–465.CrossRefGoogle Scholar
  34. Fischer, R., and R. K. Thauer. 1990a. Ferredoxin-dependent methane formation from acetate in cell extracts of Methanosarcina barkeri (strain MS). FEBS Lett. 269:368–372.PubMedCrossRefGoogle Scholar
  35. Fischer, R., and R. K. Thauer. 1990b. Methanogenesis from acetate in cell extracts of Methanosarcina barkeri: isotope exchange between CO2 and the carbonyl group of acetyl-CoA, and the role of H2. Arch. Microbiol. 153:156–162.CrossRefGoogle Scholar
  36. Grahame, D. A. 1989. Different isozymes of methylcobalamin-2-mercaptoethanesulfonate methyltransferase predominate in methanol-grown versus acetate-grown Methanosarcina barkeri. J. Biol. Chem. 264: 12890–12894.Google Scholar
  37. Grahame, D. A. 1991. Catalysis of acetyl-CoA cleavage and tetrahydrosarcinapterin methylation by a carbon monoxide dehydrogenase-corrinoid enzyme complex. J. Biol. Chem. 266:22227–22233.PubMedGoogle Scholar
  38. Grahame, D. A., and T. C. Stadtman. 1987a. Carbon monoxide dehydrogenase from Methanosarcina barkeri. Disaggregation, purification, and physiochemical properties of the enzyme. J. Biol. Chem. 262:3706–3712.PubMedGoogle Scholar
  39. Grahame, D. A., and T. C. Stadtman. 1987b. In vitro methane and methyl coenzyme M formation from acetate: evidence that acetyl-CoA is the required intermediate activated form of acetate. Biochem. Biophys. Res. Commun. 147:254–258.PubMedCrossRefGoogle Scholar
  40. Guyot, J. P. 1986. Role of formate in methanogenesis from xylan by Cellulomonas sp. associated with methanogens and Desulfovibrio vulgaris: inhibition of the aceticlastic reaction. FEMS Microbiol. Lett. 34:149–153.CrossRefGoogle Scholar
  41. Guyot, J. P., and F. Ramirez. 1989. Inhibition of the anaerobic acetate degradation by formate. Biotechnol. Lett. 11:365–368.CrossRefGoogle Scholar
  42. Harder, S. R., W.-P. Lu, B. A. Feinberg, and S. W. Ragsdale. 1989. Spectroelectrochemical studies of the corrinoid iron-sulfur protein involved in acetyl coenzyme-A synthesis by Clostridium thermoaceticum. Biochemistry 28:9080–9087.Google Scholar
  43. Hausner, W., G. Frey, and M. Thomm. 1991. Control regions of an archaeal gene. A TATA box and an initiator element promote cell-free transcription of the tRNAval gene of Methanococcus vannielii. J. Mol. Biol. 222:495–508.CrossRefGoogle Scholar
  44. Hedderich, R., A. Berkessel, and R. K. Thauer. 1989. Catalytic properties of the heterodisulfide reductase involved in the final step of methanogenesis. FEBS Lett. 255:67–71.CrossRefGoogle Scholar
  45. Hoppe-Seyler, F. 1876. Ueber die processe der gährungen und ihre beziehung zum leben der Organismen. Pflügers Arch. Ges. Physiol. 12:1–17.CrossRefGoogle Scholar
  46. Hoppe-Seyler, F. 1887. Die methangaehrung der essigsaeuer. Hoppe-Seyler’s Z. Physiol. Chem. 11:561–568.Google Scholar
  47. Huser, B. A., K. Wuhrmann, and A. J. B. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132:1–9.CrossRefGoogle Scholar
  48. Hutten, T. J., H. C. M. Bongaerts, C. van der Drift, and G. D. Vogles. 1980. Acetate, methanol and carbon dioxide as substrates for growth of Methanosarcina barkeri. Antonie van Leeuwenhoek J. Microbiol. Serol. 46:601–610.CrossRefGoogle Scholar
  49. Jablonski, P. E., A. A. DiMarco, T. A. Bobik, M. C. Cabell, and J. G. Ferry. 1990. Protein content and enzyme activities in methanol- and acetate-grown Methanosarcina thermophila. J. Bacteriol. 172:1271–1275.Google Scholar
  50. Jablonski, P. E., and J. G. Ferry. 1991. Purification and properties of methyl coenzyme M methylreductase from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:2481–2487.Google Scholar
  51. Jablonski, P. E., W.-P. Lu, S. W. Ragsdale, and J. G. Ferry. 1993. Characterization of the metal centers of the corrinoid/iron-sulfur component of the CO dehydrogenase enzyme complex from Methanosarcina thermophila by EPR spectroscopy and spectroelectrochemistry. J. Biol. Chem. 268:325–329.PubMedGoogle Scholar
  52. Jaun, B., and A. Pfaltz. 1988. Coenzyme F430 from methanogenic bacteria: methane formation by reductive carbon-sulfur bond cleavage of methyl sulphonium ions catalysed by F430 pentamethyl ester, J. Chem. Soc. Chem. Comm. 293–294.Google Scholar
  53. Jeris, J. S., and P. L. McCarty. 1965. The biochemistry of methane fermentation using 14C-tracers. J. Water Poll Control Fed. 37:178–192.Google Scholar
  54. Jetten, M. S. M., A. J. Fluit, A. J. M. Stams, and A. J. B. Zehnder. 1992. A fluoride-insensitive inorganic pyrophosphatase isolated from Methanothrix soehngenii. Arch. Microbiol. 157:284–289.CrossRefGoogle Scholar
  55. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1992. Methanogenesis from acetate — A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. FEMS Microbiol. Rev. 88:181–198.CrossRefGoogle Scholar
  56. Jetten, M. S. M., W. R. Hagen, A. J. Pierik, A. J. M. Stams, and A. J. B. Zehnder. 1991. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 195:385–391.CrossRefGoogle Scholar
  57. Jetten, M. S. M., A. J. Pierik, and W. R. Hagen. 1991. EPR characterization of a highspin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. Eur. J. Biochem. 202:1291–1297.CrossRefGoogle Scholar
  58. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1991. Adenine nucleotide content and energy charge of Methanothrix soehngenii during acetate degradation. FEMS Microbiol. Lett. 84:313–317.CrossRefGoogle Scholar
  59. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990a. Acetate threshold values and acetate activating enzymes in methanogenic bacteria. FEMS Microbiol. Ecol. 73:339–344.CrossRefGoogle Scholar
  60. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1990b. Purification and some properties of the methyl-CoM reductase of Methanothrix soehngenii. FEMS Microbiol. Lett. 66:183–186.CrossRefGoogle Scholar
  61. Jetten, M.S.M.,A.J.M. Stams, and A. J. B. Zehnder. 1989a. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehngenii. J. Bacteriol. 171:5430–5435.Google Scholar
  62. Jetten, M. S. M., A. J. M. Stams, and A. J. B. Zehnder. 1989b. Purification and characterization of an oxygen-stable carbon monoxide dehydrogenase of Methanothrix soehngenii. FEBS Lett. 181:437–441.Google Scholar
  63. Karrasch, M., M. Bott, and R. K. Thauer. 1989. Carbonic anhydrase activity in acetate grown Methanosarcina barkeri. Arch. Microbiol. 151:137–142.CrossRefGoogle Scholar
  64. Kemner, J. M., J. A. Krzycki, R. C. Prince, and J. G. Zeikus. 1987. Spectroscopic and enzymatic evidence for membrane-bound electron transport carriers and hydrogenase and their relation to cytochrome b function in Methanosarcina barkeri. FEMS Microbiol. Lett. 48:267–272.CrossRefGoogle Scholar
  65. Kohler, H. P. E. 1988. Isolation of cobamides from Methanothrix soehngenii: 5-methyl-benzimidazole as the α-ligand of the predominant cobamide. Arch. Microbiol. 150:219–223.CrossRefGoogle Scholar
  66. Kohler, H. P. E., and A. J. B. Zehnder. 1984. Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soehngenii. FEMS Microbiol. Lett. 21:287–292.CrossRefGoogle Scholar
  67. Krzycki, J. A., L. J. Lehman, and J. G. Zeikus. 1985. Acetate Catabolism by Methanosarcina barkeri: evidence for involvement of carbon monoxide dehydrogenase, methyl coenzyme M, and methylreductase. J. Bacteriol. 163:1000–1006.PubMedGoogle Scholar
  68. Krzycki, J. A., J. B. Morgan, R. Conrad, and J. G. Zeikus. 1987. Hydrogen metabolism during methanogenesis from acetate by Methanosarcina barkeri. FEMS Microbiol. Lett. 40:193–198.CrossRefGoogle Scholar
  69. Krzycki, J. A., L. E. Mortenson, and R. C. Prince. 1989. Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J. Biol. Chem. 264:7217–7221.Google Scholar
  70. Krzycki, J. A., and R. C. Prince. 1990. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. Biochim. Biophys. Acta. 1015:53–60.CrossRefGoogle Scholar
  71. Krzycki, J. A., R. H. Wolkin, and J. G. Zeikus. 1982. Comparison of unitrophic and mixotrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri. J. Bacteriol. 149:247–254.Google Scholar
  72. Krzycki, J. A., and J. G. Zeikus. 1984a. Acetate catabolism by Methanosarcina barkeri: hydrogen-dependent methane production from acetate by a soluble cell protein fraction. FEMS Microbiol. Lett. 25:27–32.CrossRefGoogle Scholar
  73. Krzycki, J. A., and J. G. Zeikus. 1984b. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri. J. Bacteriol. 158:231–237.Google Scholar
  74. Kühn, W., K. Fiebig, H. Hippe, R. A. Man, B. A. Huser, and G. Gottschalk. 1983. Distrubtion of cytochromes in methanogenic bacteria. FEMS Microbiol. Lett. 20:407–410.CrossRefGoogle Scholar
  75. Kühn, W., and G. Gottschalk. 1983. Characterization of the cytochromes occurring in Methanosarcina species. Eur. J. Biochem. 135:89–94.PubMedCrossRefGoogle Scholar
  76. Kumar, M., and S.W. Ragsdale. 1992. Characterization of the CO binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum by infrared spectroscopy. J. Am. Chem. Soc. 114:8713–8715.CrossRefGoogle Scholar
  77. Ladapo, J., and W. B. Whitman. 1990. Method for isolation of auxotrophs in the methanogenic archaebacteria: role of the acetyl-CoA pathway of autotrophic CO2 fixation in Methanococcus maripaludis. Proc. Natl. Acad. Sci. USA. 87:5598–5602.CrossRefGoogle Scholar
  78. Laufer, K., B. Eikmanns, U. Frimmer, and R. K. Thauer. 1987. Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved. Z. Naturforsch. 42c:360–372.Google Scholar
  79. Lin, S. K., and B. Jaun. 1991. Coenzyme F430 from methanogenic bacteria: detection of a paramagnetic methylnickel(II) derivative of the pentamethyl ester by 2H-NMR spectroscopy, Helv. Chim. Acta 74:1725–1738.CrossRefGoogle Scholar
  80. Lindahl, P. A., E. Münck, and S.W. Ragsdale. 1990a. CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. J. Biol. Chem. 265:3873–3879.PubMedGoogle Scholar
  81. Lindahl, P. A., S. W. Ragsdale, and E. Münck. 1990b. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. J. Biol. Chem. 265:3880–3888.Google Scholar
  82. Lovley, D. R., and J. G. Ferry. 1985. Production and consumption of H2 during growth of Methanosarcina spp. on acetate. Appl. Environ. Microbiol. 49:247–249.PubMedGoogle Scholar
  83. Lovley, D. R., R. H. White, and J. G. Ferry. 1984. Identification of methyl coenzyme M as an intermediate in methanogenesis from acetate in Methanosarcina spp. J. Bacteriol. 160:521–525.Google Scholar
  84. Lu, W.-P., S. R. Harder, and S. W. Ragsdale. 1990. Controlled potential enzymology of methyl transfer reactions involved in acetyl-CoA synthesis by CO dehydrogenase and the corrinoid/iron-sulfur protein from Clostridium thermoaceticum. J. Biol. Chem. 265:3124–3133.Google Scholar
  85. Lu, W.-P., and S. W. Ragsdale. 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J. Biol. Chem. 266:3554–3564.PubMedGoogle Scholar
  86. Lundie, L. L., and J. G. Ferry. 1989. Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J. Biol. Chem. 264:18392–18396.PubMedGoogle Scholar
  87. Macario, A. J. L., and E. C. De Macario. 1987. Antigenic distinctiveness, heterogeneity, and relationships of Methanothrix spp. J. Bacteriol. 169:4099–4103.PubMedGoogle Scholar
  88. Man, R. A. 1980. Isolation and characterization of Methanococcus mazei. Curr. Microbiol. 3:321–326.Google Scholar
  89. Mah, R. A., M. R. Smith and L. Baresi. 1978. Studies on an acetate-fermenting strain of Methanosarcina. Sppl. Environ. Microbiol. 35:1174–1184.Google Scholar
  90. Mclnerney, M.J. and M. P. Bryant. 1981. Anaerobic degradation of lactate by syntrophic associations of Methanosarcina barkeri and Desulfovibrio species and effect of H2 on acetate degradation. Appl. Environ. Microbiol. 41:346–354.Google Scholar
  91. Min, H., and S. H. Zinder. 1989. Kinetics of acetate utilization by 2 thermophilic acetotrophic methanogens — Methanosarcina sp strain CALS-1 and Methanothrix sp strain CALS-1. Appl. Environ. Microbiol. 55:488–491.PubMedGoogle Scholar
  92. Mukhopadhyay, B., E. Purwantini, E. C. Demacario, and L. Daniels. 1991. Characterization of a Methanosarcina strain isolated from goat feces, and that grows on H2-CO2 only after adaptation. Curr. Microbiol. 23:165–173.CrossRefGoogle Scholar
  93. Murray, P. A., and S. H. Zinder. 1985. Nutritional requirements of Methanosarcina sp. strain TM-1. Appl. Environ. Microbiol. 50:49–55.PubMedGoogle Scholar
  94. Nelson, M. J. K., and J. G. Ferry. 1984. Carbon monoxide-dependent methyl coenzyme M methylreductase in acetotrophic Methanosarcina spp. J. Bacteriol. 160:526–532.PubMedGoogle Scholar
  95. Nelson, M. J. K., K. C. Terlesky, and J. G. Ferry. 1987. Recent developments on the biochemistry of methanogenesis from acetate, p. 70–76. In van Verseveld, H. W. and J. A. Duine (ed.), Microbial Growth on C-l Compounds. Martinus Nijhoff, Dordrecht.CrossRefGoogle Scholar
  96. Ohtsubo, S., K. Demizu, S. Kohno, I. Miura, T. Ogawa, and H. Fukuda. 1992. Comparison of acetate utilization among strains of an aceticlastic methanogen, Methanothrix soehngenii. Appl. Environ. Microbiol. 58:703–705.Google Scholar
  97. Patel, G. B. 1992. A contrary view of the proposal to assign a neotype strain for Methanothrix soehngenii. Int. J. Syst. Bacteriol. 42:324—326.Google Scholar
  98. Patel, G. B., C. Baudet, and B. J. Agnew. 1988. Nutritional requirements for growth of Methanothrix concilii. Can. J. Microbiol. 34:73–81.Google Scholar
  99. Patel, G. B., and G. D. Sprott. 1990. Methanosaeta concilii gen-nov, sp-nov (Methanothrix concilii) and Methanosaeta thermoacetophila nom-rev, comb-nov. Int. J. of Syst. Bacteriol. 40:79–82.CrossRefGoogle Scholar
  100. Patel, G. B., and G. D. Sprott. 1991. Cobalt and sodium requirements for methanogenesis in washed cells of Methanosaeta concilii. Can. J. Microbiol. 37:110–115.Google Scholar
  101. Peinemann, S., V. Müller, M. Blaut, and G. Gottschalk. 1988. Bioenergetics of methanogenesis from acetate by Methanosarcina barkeri. J. Bacteriol. 170:1369–1372.Google Scholar
  102. Pine, M. J., and H. A. Barker. 1956. Studies on the methane fermentation. XII. The pathway of hydrogen in the acetate fermentation. J. Bacteriol. 71:644–648.PubMedGoogle Scholar
  103. Pine, M. J., and W. Vishniac. 1957. The methane fermentations of acetate and methanol. J. Bacteriol. 73:736–742.PubMedGoogle Scholar
  104. Pretorius, W. A. 1972. The effect of formate on the growth of acetate utilizing methanogenic bacteria. Water Res. 6:1213–1217.CrossRefGoogle Scholar
  105. Ragsdale, S. W. 1991. Enzymology of the acetyl-CoA pathway of CO2 fixation. CRC Rev. Biochem. Mol. Biol. 26:261–300.CrossRefGoogle Scholar
  106. Raybuck, S. A., S. E. Ramer, D. R. Abbanat, J. W. Peters, W. H. Orme-Johnson, J. G. Ferry, and C.T. Walsh. 1991. Demonstration of carbon-carbon bond cleavage of acetyl coenzyme A by using isotopic exchange catalyzed by the CO dehydrogenase complex from acetate-grown Methanosarcina thermophila. J. Bacteriol. 173:929–932.Google Scholar
  107. Robinson, R. W. 1986. Life cycles in the methanogenic archaebacterium Methanosarcina mazei. Appl. Environ. Microbiol. 52:17–27.Google Scholar
  108. Scherer, P. and H. Sahm. 1980. Growth of Methanosarcina barkeri on methanol or acetate in a defined medium. In Proceedings, First International Symposium on Anaerobic Digestion. Proceedings, First International Symposium on Anaerobic Digestion. Stafford, D. A. and Wheatley, B.I. (eds.), Scientific Press, Cardiff, England.Google Scholar
  109. Schnellen, C. G. T. P. 1947. Onderzoekingen over der methaangisting. Ph.D. Thesis, Technical University of Delft, Rotterdam, Netherlands.Google Scholar
  110. Schwörer, B., and R. K. Thauer. 1991. Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch. Microbiol. 155:459–465.CrossRefGoogle Scholar
  111. Silveira, R. G., N. Nishio, and S. Nagai. 1991. Growth characteristics and corrinoid production of Methanosarcina barkeri on methanol-acetate medium. J. Ferm. Bioeng. 71:28–34.CrossRefGoogle Scholar
  112. Smith, M. R., and R. A. Man. 1978. Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol. Appl. Environ. Microbiol. 36:870–879.PubMedGoogle Scholar
  113. Smith, M. R., and R. A. Mah. 1980. Acetate as sole carbon and energy source of growth for Methanosarcina strain 227. Appl. Environ. Microbiol. 39:993–999.PubMedGoogle Scholar
  114. Smith, P. H., and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Microbiol. 14:368–371.PubMedGoogle Scholar
  115. Söehngen, N. L. 1906. Het ontstaan en verdwijnen van waterstof en methaan onder den invloed van het organisch leven. Ph.D. Thesis, Technical University of Delft, Rotterdam, Netherlands.Google Scholar
  116. Sowers, K. R., S. F. Baron, and J. G. Ferry. 1984. Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl. Environ. Microbiol. 47:971–978.PubMedGoogle Scholar
  117. Sowers, K. R., and R. P. Gunsalus. 1988. Adaptation for growth at various saline concentrations by the archaebacterium Methanosarcina thermophila. J. Bacteriol. 170:998–1002.Google Scholar
  118. Sowers, K. R., M. J. Nelson, and J. G. Ferry. 1984. Growth of acetotrophic, methane-producing bacteria in a pH auxostat. Curr. Microbiol. 11:227–230.CrossRefGoogle Scholar
  119. Stackebrandt, E., E. Seewaldt, W. Ludwig, K.-H. Schleifer, and B. A. Huser. 1982. The phylogenetic position of Methanothrix soehngenii. Elucidated by a modified technique of sequencing oligonucleotides from 16S rRNA. Zbl. Bakt. Hyg., I. Abt. Orig. C3:90–100.Google Scholar
  120. Stadtman, T. C. 1967. Methane fermentation. Annu. Rev. Microbiol. 21:121–142.PubMedCrossRefGoogle Scholar
  121. Stadtman, T. C., and H. A. Barker. 1949. Studies on the methane fermentation. VII. Tracer experiments on the mechanism of methane formation. Arch. Biochem. 21:256–264.PubMedGoogle Scholar
  122. Stadtman, T. C., and H. A. Barker. 1951. Studies on the methane fermentation IX. The origin of methane in the acetate and methanol fermentation by Methanosarcina. J. Bacteriol. 61:81–86.Google Scholar
  123. Stupperich, E., and B. Krautler. 1988. Pseudo vitamine B12 or 5-hydroxybenzimidazolylcobamide are the corrinoids found in methanogenic bacteria. Arch. Microbiol. 149:268–271.CrossRefGoogle Scholar
  124. Terlesky, K. C., M. J. Barber, D. J. Aceti, and J. G. Ferry. 1987. EPR properties of the Ni-Fe-C center in an enzyme complex with carbon monoxide dehydrogenase activity from acetate-grown Methanosarcina thermophila. Evidence that acetyl-CoA is a physiological substrate. J. Biol. Chem. 262:15392–15395.PubMedGoogle Scholar
  125. Terlesky, K. C., and J. G. Ferry. 1988a. Ferredoxin requirement for electron transport from the carbon monoxide dehydrogenase complex to a membrane-bound hydrogenase in acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4075–4079.Google Scholar
  126. Terlesky, K. C., and J. G. Ferry. 1988b. Purification and characterization of a ferredoxin from acetate-grown Methanosarcina thermophila. J. Biol. Chem. 263:4080–4082.Google Scholar
  127. Terlesky, K. C., M. J. K. Nelson, and J. G. Ferry. 1986. Isolation of an enzyme complex with carbon monoxide dehydrogenase activity containing a corrinoid and nickel from acetate-grown Methanosarcina thermophila. J. Bacteriol. 168:1053–1058.Google Scholar
  128. Thauer, R. K., D. Moller-Zinkhan, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anerobic chemotrophic bacteria. Annu. Rev. Microbiol. 43:43–67.PubMedCrossRefGoogle Scholar
  129. Thomas, I., H.-C. Dubourguier, G. Presier, P. Debeire, and G. Albagnac. 1987. Purification of component C from Methanosarcina mazei and immunolocalization in Methanosarcinaceae. Arch. Microbiol. 148:193–201.CrossRefGoogle Scholar
  130. van de Wijingaard, W. M. H., C. van der Drift, and G. D. Vogels. 1988. Involvement of a corrinoid enzyme in methanogenesis from acetate in Methanosarcina barkeri. FEMS Microbiol Lett. 52:165–172.CrossRefGoogle Scholar
  131. van de Wijingaard, W. M. H., P. Vermey, and C. van der Drift. 1991. Formation of factor 390 by cell extracts of Methanosarcina barkeri. J. Bacteriol. 173:2710–2711.Google Scholar
  132. Weimer, P. J., and J. G. Zeikus. 1978. Acetate metabolism in Methanosarcina barkeri. Arch. Microbiol. 119:175–182.CrossRefGoogle Scholar
  133. Westermann, P., B. K. Ahring, and R. A. Mah. 1989a. Acetate production by methanogenic bacteria. Appl. Environ. Microbiol. 55:2257–2261.PubMedGoogle Scholar
  134. Westermann, P., B. K. Ahring, and R. A. Mah. 1989b. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55:514–515.PubMedGoogle Scholar
  135. Westermann, P., B. K. Ahring, and R. A. Mah. 1989c. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol. 55:1262–1266.PubMedGoogle Scholar
  136. Woese, C. R., O. Kandier, and M. L. Wheelis. 1990. Towards a natural system of organisms. Proposal for the domains archaea, bacteria, and eucarya. Proc. Natl. Acad. Sci. USA 87:4576–4579.PubMedCrossRefGoogle Scholar
  137. Zehnder, A. J. B., B. A. Huser, T. D. Brock, and K. Wuhrmann. 1980. Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 124:1–11.PubMedCrossRefGoogle Scholar
  138. Zeikus, J. G., P. J. Weimer, D. R. Nelson, and L. Daniels. 1975. Bacterial methanogenesis: acetate as a methane precursor in pure culture. Arch. Microbiol. 104:129–134.CrossRefGoogle Scholar
  139. Zinder, S. H. 1988. Conversion of acetic acid to methane by thermophiles. In Anaerobic Digestion 1988, Hall, E. R. and P. N. Hobson (eds.), p. 1–12, Pergamon Press.Google Scholar
  140. Zinder, S. H. 1990. Conversion of acetic acid to methane by thermophiles. FEMS Microbiol. Rev. 75:125–137.CrossRefGoogle Scholar
  141. Zinder, S. H., and T. Anguish. 1992. Carbon Monoxide, hydrogen and formate metabolism during methanogenesis from acetate by thermophilic cultures of Methanosarcina and Methanothrix strains. Appl. Environ. Microbiol. 58:3323–3329.PubMedGoogle Scholar
  142. Zinder, S. H., T. Anguish, and A. L. Lobo. 1987. Isolation and characterization of a thermophilic acetotrophic strain of Methanothrix. Arch. Microbiol. 146:315–322.CrossRefGoogle Scholar
  143. Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic (58°C) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47:796–807.PubMedGoogle Scholar
  144. Zinder, S. H., and A. F. Elias. 1985. Growth substrate effects on acetate and methanol catabolism in Methanosarcina sp. strain TM-1. J. Bacteriol. 163:317–323.PubMedGoogle Scholar
  145. Zinder, S. H., and M. Koch. 1984. Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch. Microbiol. 138:263–272.CrossRefGoogle Scholar
  146. Zinder, S. H., and R. A. Mah. 1979. Isolation and characterization of a thermophilic strain of Methanosarcina unable to use H2-CO2 for methanogenesis. Appl. Environ. Microbiol. 38:996–1008.PubMedGoogle Scholar
  147. Zinder, S. H., K. R. Sowers, and J. G. Ferry. 1985. Methanosarcina thermophila sp. nov., a thermophilic, acetotrophic, methane-producing bacterium. Int. J. Syst. Bacteriol. 35:522–523.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • James G. Ferry

There are no affiliations available

Personalised recommendations